
Now, when Button1 is clicked, the procedure PlayNote will be called, with its
number parameter having the value 1. It should set Sound1.Source to “1.wav” and
play the sound.

Create a similar Button2.Click block with a call to PlayNote with a parameter of 2.
(You can copy the existing call PlayNote block and move it into the body of
Button2.Click, making sure to change the parameter.) Your program should look like
Figure 9-5.

Figure 9-6. Creating a procedure to play a note

INSTRUCTING ANDROID TO LOAD THE SOUNDS

If you tried out the preceding calls to PlayNote, you might have been disappointed by
not hearing the sound you expected or by experiencing an error or unexpected delay.
That’s because Android needs to load sounds at runtime, which entails some lag
before they can be played. This issue didn’t come up earlier because filenames placed
in a Sound component’s Source property in the Designer are automatically loaded
when the program starts. Because we don’t set Sound1.Source until after the program
has started, that initialization process does not take place. We have to explicitly load
the sounds when the program starts up, as shown in Figure 9-6.

Figure 9-7. Loading sounds when the app launches

154 Chapter 9: Xylophone

Chapter 9, Xylophone

Figure 9-10. Adding components for recording and playing back sounds

RECORDING NOTES AND TIMES

We now need to add the correct behavior in the Blocks Editor. We will need to
maintain lists of notes and times and add to the lists whenever the user presses a
button.

1. Create a new variable by going to the Variables drawer and dragging out an
initialize global to block from the Definition drawer.

2. Change the name of the variable to “notes”.

3. Open the Lists drawer and drag a create empty list block out, placing it in the
socket of the initialize global to block.

This defines a new variable named “notes” to be an empty list. Repeat the steps for
another variable, which you should name “times”. These new blocks should look like
those in Figure 9-10.

Figure 9-11. Initialize two variables to store the notes and the timing information

How the blocks work

Whenever a note is played, we need to save both the name of the sound file (to the
list notes) and the instant in time at which it was played (to the list times). To record

158 Chapter 9: Xylophone

Chapter 9, Xylophone

the instant in time, we will use the Clock1.Now block, which returns the current instant
in time (e.g., March 12, 2011, 8:33:14 AM), to the nearest millisecond. These values,
obtained through the Sound1.Source and Clock1.Now blocks, should be added to the
lists notes and times, respectively, as shown in Figure 9-11.

Figure 9-12. Adding the sounds played to the list

159Recording and Playing Back Notes

Recording and Playing Back Notes

For example, if you play “Row, Row, Row Your Boat” [C C C D E], your lists would
end up having five entries, which might appear as follows:

• notes: 1.wav, 1.wav, 1.wav, 2.wav, 3.wav

• times [dates omitted]: 12:00:01, 12:00:02, 12:00:03, 12:00:03.5, 12:00:04

When the user presses the Reset button, we want the two lists to go back to their
original, empty states. Because the user won’t see any change, it’s nice to add a small
Sound1.Vibrate block to indicate that the key click was registered. Figure 9-12 shows
the blocks for this behavior.

Figure 9-13. Providing feedback when the user resets the app

PLAYING BACK NOTES

As a thought experiment, let’s first look at how to implement note playback without
worrying about timing. We could (but won’t) do this by creating these blocks as
shown in Figure 9-13:

• A variable count to keep track of which note we’re on.

• A new procedure, PlayBackNote, which plays that note and moves on to the
next one.

• Code to run when PlayButton is pressed that sets the count to 1 and calls
PlayBackNote unless there are no saved notes.

160 Chapter 9: Xylophone

Chapter 9, Xylophone

Figure 9-14. Playing back the recorded notes

How the blocks work

This might be the first time you’ve seen a procedure make a call to itself. Even though
at first glance this might seem bogus, it is in fact an important and powerful
computer science concept called recursion.

To get a better idea of how recursion works, let’s step through what happens if a
user plays/records three notes (1.wav, 3.wav, and 6.wav) and then presses the Play
button. First, PlayButton.Click starts running. Because the length of the list notes is
3, which is greater than 0, count is set to 1, and PlayBackNote is called:

1. The first time PlayBackNote is called, count = 1:

◦ Sound1.Source is set to the first item in notes, which is 1.wav.

◦ Sound1.Play is called, playing this note.

◦ Because count (1) is less than the length of notes (3), count is incremented
to 2, and PlayBackNote is called again.

2. The second time PlayBackNote is called, count = 2:

◦ Sound1.Source is set to the second item in notes, which is 3.wav.

◦ Sound1.Play is called, playing this note.

161Recording and Playing Back Notes

Recording and Playing Back Notes

◦ Because count (2) is less than the length of notes (3), count is incremented
to 3, and PlayBackNote is called again.

3. The third time PlayBackNote is called, count = 3:

◦ Sound1.Source is set to the third item in notes, which is 6.wav.

◦ Sound1.Play is called, playing this note.

◦ Because count (3) is not less than the length of notes (3), nothing else
happens, and playback is complete.

Note Although recursion is powerful, it can also be dangerous. As a
thought experiment, ask yourself what would have happened if the
programmer forgot to insert the blocks in PlayBackNote that
incremented count.

Although the recursion is correct, there is a different problem with the preceding
example: almost no time passes between one call to Sound1.Play and the next, so
each note is interrupted by the next note, except for the last one. No note (except for
the last) is allowed to complete before Sound1’s source is changed and Sound1.Play is
called again. To achieve the correct behavior, we need to implement a delay between
calls to PlayBackNote.

PLAYING BACK NOTES WITH PROPER DELAYS

We will implement the delay by setting the timer on the clock to the amount of time
between the current note and the next note. For example, if the next note is played
3,000 milliseconds (3 seconds) after the current note, we will set
Clock1.TimerInterval to 3,000, after which PlayBackNote should be called again.
Make the changes shown in Figure 9-14 to the body of the if block in PlayBackNote
and create and fill in the Clock1.Timer event handler, which specifies what should
happen when the timer goes off.

162 Chapter 9: Xylophone

Chapter 9, Xylophone

Figure 9-15. Adding delays between the notes

How the blocks work

Let’s assume the following contents for the two lists:

• notes: 1.wav, 3.wav, 6.wav

• times: 12:00:00, 12:00:01, 12:00:04

As Figure 9-14 shows, PlayButton.Click sets count to 1 and calls PlayBackNote.

1. The first time PlayBackNote is called, count = 1:

◦ Sound1.Source is set to the first item in notes, which is “1.wav”.

◦ Sound1.Play is called, playing this note.

◦ Because count (1) less than the length of notes (3), Clock1.TimerInterval is
set to the amount of time between the first (12:00:00) and second items in
times (12:00:01): 1 second. count is incremented to 2. Clock1.Timer is
enabled and starts counting down.

Nothing else happens for 1 second, at which time Clock1.Timer runs,
temporarily disabling the timer and calling PlayBackNote.

2. The second time PlayBackNote is called, count = 2:

◦ Sound1.Source is set to the second item in notes, which is “3.wav”.

◦ Sound1.Play is called, playing this note.

◦ Because count (2) less than the length of notes (3), Clock1.TimerInterval
is set to the amount of time between the second (12:00:01) and third items
in times (12:00:04): 3 seconds. count is incremented to 3. Clock1.Timer is
enabled and starts counting down.

163Recording and Playing Back Notes

Recording and Playing Back Notes

Nothing else happens for 3 seconds, at which time Clock1.Timer runs,
temporarily disabling the timer and calling PlayBackNote.

3. The third time PlayBackNote is called, count = 3:

◦ Sound1.Source is set to the third item in notes, which is “6.wav”.

◦ Sound1.Play is called, playing this note.

◦ Because count (3) is not less than the length of notes (3), nothing else
happens. Playback is complete.

The Complete App: Xylophone
Figure 9-15 shows the final block configuration for the Xylophone app.

164 Chapter 9: Xylophone

Chapter 9, Xylophone

Figure 9-16. The blocks for Xylophone

Variations
Here are some alternative scenarios to explore:

• Currently, there’s nothing to stop a user from clicking ResetButton during
playback, which will cause the program to crash. (Can you figure out why?)
Modify PlayButton.Click so it disables ResetButton. To re-enable it when the
song is complete, change the if block in PlayButton.Click into an if else
block, and re-enable ResetButton in the else portion.

• Similarly, the user can currently click PlayButton while a song is already
playing. (Can you figure out what will happen?) Make it so PlayButton.Click

165Variations

Variations

disables PlayButton and changes its text to “Playing...” You can re-enable it and
reset the text in an ifelse block, as described in the previous bullet.

• Add a button with the name of a song, such as “Für Elise”. If the user clicks it,
populate the notes and times lists with the corresponding values, set count to 1,
and call PlayBackNote. To set the appropriate times, you’ll find the
Clock1.MakeInstantFromMillis block useful.

• If the user presses a note, goes away and does something else, and then comes
back hours later and presses an additional note, the notes will be part of the
same song, which is probably not what the user intended. Improve the program
by 1) stopping recording after some reasonable interval of time, such as a
minute; or, 2) putting a limit on the amount of time used for
Clock1.TimerInterval by using the max block from the Math drawer.

• Visually indicate which note is playing by changing the appearance of the
button—for example, by changing its Text, BackgroundColor, or
ForegroundColor.

Summary
Here are some of the ideas we covered in this tutorial:

• You can play different audio files from a single Sound component by changing
its Source property. This enabled us to have one Sound component instead of
eight. Just be sure to load the sounds at initialization to prevent delays
(Figure 9-6).

• Lists can provide a program with memory, with a record of user actions stored
in the list and later retrieved and reprocessed. We used this functionality to
record and play back a song.

• You can use the Clock component to determine the current time. Subtracting
two time values gives us the amount of time between two events.

• You can set the TimerInterval property for Clock within the program, such as
how we set it to the duration of time between the starts of two notes.

• It is not only possible but sometimes desirable for a procedure to make a call to
itself. This is a powerful technique called recursion. When writing a recursive
procedure, make sure that there is a base case in which the procedure ends,
rather than calling itself, or the program will loop infinitely.

166 Chapter 9: Xylophone

Chapter 9, Xylophone

