

Figure 22-4. A Voting app that stores votes to TinyWebDB

STORING DATA BY USING TINYWEBDB

The TinyWebDB.StoreValue block works in the same manner as TinyDB.StoreValue,
except that the data is stored on the Web. For our voting sample, assume that the
user can enter a vote in a text box named VoteTextBox and tap a button named
VoteButton to submit the vote. To store the vote to the web database so that others
can see it, we’ll code the VoteButton.Click event handler like the example in
Figure 22-4.

337Shared Data and TinyWebDB

Shared Data and TinyWebDB

Figure 22-5. When the user enters a vote, it is stored on the web database

The tag used to identify the data is the user’s email, which has previously been
stored in the variable myEmail (you’ll see this later). The value is whatever the user
typed in VoteTextBox. So, if the user email was joe@zmail.com and his vote was “Pizza,”
the entry would be stored in the database as shown in Table 22-2.

Table 22-2. The tag and value for the vote are recorded in the database

tag value

joe@zmail.com Pizza

The TinyWebDB.StoreValue block sends the tag-value pair over the Web to the
database server at http://appinvtinywebdb.appspot.com. As you test your app, you can
go to that URL, click getValue, and enter a tag for which you’ve stored a value. The
website will show you the current value for that tag.

REQUESTING AND PROCESSING DATA WITH TINYWEBDB

Retrieving data with TinyWebDB is more complicated than with TinyDB. With TinyDB,
the GetValue operation immediately returns a value because your app is
communicating with a database directly on the Android device. With TinyWebDB, the
app is requesting data over the Web, which can take time, so Android requires a two-
step scheme for handling it.

With TinyWebDB, a call to GetValue only requests the data; it should really be called
“RequestValue” because it just makes the request to the web database and doesn’t

338 Chapter 22: Working with Databases

Chapter 22, Working with Databases

mailto:wolber@gmail.com
mailto:wolber@gmail.com
http://appinvtinywebdb.appspot.com

actually get a value from it right away. To see this more clearly, check out the
difference between the TinyDB.GetValue block and the TinyWebDB.GetValue block
shown in Figure 22-5.

Figure 22-6. The TinyDB.GetValue and TinyDB.GotValue blocks

The TinyDB.GetValue block returns a value right away, and thus a plug appears on
its left side so that the returned value can be placed into a variable or property. The
TinyWebDB.GetValue block does not return a value immediately, so there is no plug on
its left side.

Instead, when the web database fulfills the request and the data arrives back at the
device, a TinyWebDB.GotValue event is triggered. So, you’ll call TinyWebDB.GetValue in
one place of your app, and then you’ll program the TinyWebDB.GotValue event handler
to specify how to handle the data when it actually arrives. An event handler such as
TinyWebDB.GotValue is sometimes called a callback procedure, because some external
entity (the web database) is in effect calling your app back after processing your
request. It’s similar to ordering at a busy coffee shop: you place your order and then
wait for the barista to call your name to actually go pick up your drink. In the
meantime, she’s been taking orders from everyone else in line, too (and those people
are all waiting for their names to be called, as well).

GETVALUE-GOTVALUE IN ACTION

For our sample app, we need to store and retrieve a list of the voters who have the
app, as the app needs to show the votes of all users.

The simplest scheme for retrieving list data is to request the data when the app
launches, in the Screen.Initialize event, as shown in Figure 22-6. (In this example,
we’ll just call the database with the tag for “voterlist.”)

Figure 22-7. Requesting data in the Screen1.Initialize event

339Shared Data and TinyWebDB

Shared Data and TinyWebDB

When the list of voters arrives from the web database, the TinyWebDB1.GotValue
event handler is triggered. Figure 22-7 shows some blocks for processing the returned
list.

Figure 22-8. Using the GotValue event handler to process the returned list

The valueFromWebDB argument of GotValue holds the data returned from the
database request. Event arguments such as valueFromWebDB have meaning only
within the event handler that invokes them. They are considered local to the event
handler, as you can’t reference them in other event handlers.

Because arguments such as valueFromWebDB aren’t globally accessible, if you need
the information throughout your app, you need to transfer it to a global variable. In
the example, GotValue’s primary job is to transfer the data returned in valueFromWebDB
into the variable voterList, which you’ll use in another event handler.

The if block in the event handler is also often used in conjunction with GotValue,
the reason being that the database returns an empty text (“”) in valueFromWebDB if
there is no data for the requested tag. This empty return value occurs most commonly
when it’s the first time the app has been used. By asking if the valueFromWebDB is a list,
you’re making sure that there is some data actually returned. If the valueFromWebDB is
the empty text (the if test is false), you don’t put it into voterList.

A MORE COMPLEX GETVALUE/GOTVALUE EXAMPLE

The blocks in Figure 22-7 are a good model for retrieving data in a fairly simplistic app.
In our voting example, however, we need more complicated logic. Specifically:

• The app should prompt the user to type an email address when the program
starts. We can use a Notifier component for this, which pops up a window.
(You can find the Notifier in the “User Interface” palette in the Designer.)
When the user types an email, we’ll store it in a variable.

• Only after determining the user’s email should you call GetValue to retrieve the
voter list. Can you figure out why?

340 Chapter 22: Working with Databases

Chapter 22, Working with Databases

Figure 22-8 shows the blocks for this more complicated scheme for requesting the
database data.

Figure 22-9. In this more complex scheme, GetValue is called after getting the user’s
email instead of in Screen.Initialize

Upon startup (Screen1.Initialize), a Notifier component prompts the user to
type an email address. When the user does so, and the Notifier.AfterTextInput
event handler is triggered, the entry is put into a variable and label, and then
GetValue is called to get the list of voters. Note that GetValue isn’t called directly in
Screen.Initialize, because we need the user’s email address to be set first.

So, with these blocks, when the app initializes, it prompts the user to type an email
address and then calls GetValue with a tag of “voterlist.” When the list arrives from the
Web, GotValue is triggered. Here’s what should happen:

• GotValue should check if the data that arrives is non-empty (someone has used
the app and initiated the voter list). If there is data (a voter list), GotValue should
check if our particular user’s email address is already in the voter list. If it’s not,
it should be added to the list, and the updated list should be stored back to the
database.

• If there isn’t yet a voter list in the database, we should create one with the user’s
email address as the only item.

Figure 22-9 shows the blocks for this behavior.

341Shared Data and TinyWebDB

Shared Data and TinyWebDB

The blocks first ask if a non-empty voter list came back from the database by
calling is a list? If so, the data is put into the variable voterList. Remember,
voterList will have email addresses for everyone who has used this app. However, we
don’t know if this particular user is in the list yet, so we need to check. If the user is not
yet in the list, the user’s email address is added with add item to list, and the
updated list is stored to the web database.

Figure 22-10. Using the GotValue blocks to process the data returned from the
database and perform different actions based on what is returned

The else of the if else block is invoked if a list wasn’t returned from the web
database; this happens if nobody has used the app yet. In this case, a new voterList
is created with the current user’s email address as the first item. This one-item voter
list is then stored to the web database (with the hope that others will join, as well!).

Requesting Data with Various Tags
The voting app thus far manages a list of an app’s users. Each person can see the
email addresses of all the other users, but we haven’t yet created blocks for retrieving
and displaying each user’s vote.

Recall that the VoteButton.Click event submited a vote with a tag-value pair of
the form “email: vote.” If two people had used the app and voted, the pertinent
database entries would look something like Table 22-3.

342 Chapter 22: Working with Databases

Chapter 22, Working with Databases

Table 22-3. The tag-value pairs stored in the database

tag value

voterlist [bill@zmail.com, joe@zmail.com]

bill@zmail.com Hot dogs

joe@zmail.com Pizza

When the user clicks on the ViewVotes button, the app should retrieve all votes
from the database and display them. Suppose that the voter list has already been
retrieved into the variable voterList; we can use a for each to request the vote of
each person in the list, as shown in Figure 22-10.

Figure 22-11. Using a for each block to request the vote of each person in the list

Here we initialize a variable, currentVotesList, to an empty list, because our goal is
to add the up-to-date votes from the database into this list. We then use for each to
call TinyWebDB1.GetValue for every email address in the list, sending the current item
of the for each, renamed “email,” as the tag in the request. Note that the votes won’t
actually be added to currentVotesList until they arrive via a series of GotValue
events.

Now that we want to display the votes in our app, things get a bit more
complicated yet again. With the requests from ViewVotesButton, TinyWebDB.GotValue
will now be returning data related to all the email tags, as well as the “voterlist” tag
used to retrieve the list of user email addresses. When your app requests more than
one item from the database with different tags, you need to code TinyWebDB.GotValue
to handle all possible requests. (You might think that you could try to code multiple

343Requesting Data with Various Tags

Requesting Data with Various Tags

GotValue event handlers, one for each database request—can you figure out why this
won’t work?)

To handle this complexity, the GotValue event handler has a tagFromWebDB
argument that informs you as to which request has just arrived. In this case, if the tag
is “voterlist,” we should continue to process the request as we did previously. If the tag
is something else, we can assume it’s the email of someone in the user list, stemming
from the requests triggered in the ViewVotesButton.Click event handler. When those
requests come in, we want to add the incoming data—the voter and vote—to the
currentVotesList so that we can display it to the user.

Figure 22-11 shows the entire TinyWebDB.GotValue event handler.

Figure 22-12. The TinyWebDB.GotValue event handler

344 Chapter 22: Working with Databases

Chapter 22, Working with Databases

Setting Up a Web Database
As we mentioned earlier in the chapter, the default web database at http://
appinvtinywebdb.appspot.com is intended for prototyping and testing purposes only.
Before you deploy an app with real users, you need to create a database specifically
for your app.

You can create a web database by using the instructions at http://
appinventorapi.com/create-a-web-database-python-2-7. This site was set up by one of
the authors (Wolber) and contains sample code and instructions for setting up App
Inventor web databases and APIs. The instructions point you to some code that you
can download and use with only a minor modification to a configuration file. The
code download is the same as that used for the default web database set up by App
Inventor. It runs on Google’s App Engine, a cloud-computing service that will host
your web database on Google’s servers for free (well, at least until the site receives a
certain number of hits). By following the instructions, you can have your own private
web database that is compliant with App Inventor’s protocols up and running within
minutes and begin creating web-enabled mobile apps that use it.

When you create and deploy your own custom web database, the App Engine tool
provides you with a URL where your server resides. You can direct your app to use
your custom database server instead of the default http://
appinvtinywebdb.appspot.com, by changing the ServiceURL property in the TinyWebDB
component. After that property is changed, all calls to TinyWebDB.StoreValue and
TinyWebDB.GetValue will interface with the new web service.

Summary
App Inventor makes it easy to store data persistently through its TinyDB and
TinyWebDB components. Data is always stored as a tag-value pair, with the tag
identifying the data for later retrieval. Use TinyDB when it is appropriate to store data
directly on the device. When data needs to be shared across phones (e.g., for a
multiplayer game or a voting app), you’ll need to use TinyWebDB, instead. TinyWebDB is
more complicated because you need to set up a callback procedure (the GotValue
event handler) as well as a web database service.

345Setting Up a Web Database

Setting Up a Web Database

http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com
http://appinventorapi.com/create-a-web-database-python-2-7
http://appinventorapi.com/create-a-web-database-python-2-7
http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com

