




Figure 1-8. On your device, open the Companion app and click “Scan QR Code”

If all goes well, you should see the HelloPurr app running on your device, including
all of the components you added. As you make changes in the App Inventor Designer
or Blocks Editor, those changes will also appear on the device, as well.

Live testing setup If you have trouble setting up live testing,
visit http://appinventor.mit.edu/explore/ai2/setup.html.

If your app does appear on the device, go ahead and tap the button. Do you think
anything will happen? It won’t, because you haven’t instructed the button to do
anything yet. This is the first important point to understand about App Inventor: for

10 Chapter 1:   HelloPurr

Chapter 1, HelloPurr



every component you add in the Designer, you have to move over to the Blocks Editor
and create the code to make that component do whatever it is that you want it to do.

Adding Behaviors to the Components
You’ve just added Button, Label, and Sound components as the building blocks for
your first app. Now, let’s make the kitty meow when you tap the button. You do this
with the Blocks Editor. In the top right of the Component Designer, click “Blocks.”

Look at the Blocks Editor window. This is where you instruct the components what
to do and when to do it. You’re going to direct the kitty button to play a sound when
the user taps it. If components are ingredients in a recipe, you can think of blocks as
the cooking instructions.

MAKING THE KITTY MEOW

At the top left of the window, beneath the Blocks header, you’ll see a column that
includes a Built-in drawer and a drawer for each component you created in the
Designer: Button1, Label1, Screen1, and Sound1. When you click a drawer, you get a
bunch of options (blocks) for that component. Click the drawer for Button1. The
drawer opens, showing a selection of blocks that you can use to build the button’s
behavior, starting with Button1.Click at the top, as shown in Figure 1-9.

11Adding Behaviors to the Components

Adding Behaviors to the Components



Figure 1-9. Clicking Button1 shows the component’s blocks

Click the block labeled Button1.Click and drag it into the workspace. You’ll notice
that the word “when” is included on the Button1.Click block. Blocks including the
word “when” are called event handlers; they specify what components should do
when some particular event happens. In this case, the event we’re interested in
happens when the app user taps the image of the kitty (which is really a button), as
shown in Figure 1-10. Next, you’ll add some blocks to program what will happen in
response to that event.

12 Chapter 1:   HelloPurr

Chapter 1, HelloPurr



Figure 1-10. You’ll specify a response to the user clicking within the Button.Click block

Click Sound1 to open the drawer for the sound component, and then drag out the
call Sound1.Play block. (Remember, earlier we set the property for Sound1 to the
meow sound file you downloaded to your computer.) At this point, you might have
noticed that the call Sound1.Play block is shaped so that it can fit into a gap marked
“do” in the Button1.Click block. App Inventor is set up so that only certain blocks fit
together; this way, you always know you’re connecting blocks that actually work
together. In this case, blocks with the word “call” cause components to do things. The
two blocks should snap together to form a unit, as shown in Figure 1-11, and you’ll
hear a snapping sound when they connect.

13Adding Behaviors to the Components

Adding Behaviors to the Components



Figure 1-11. Now when someone clicks the button, the meow sound will play

Unlike traditional programming code (which often looks like a jumbled mess of
gobbledygook “words”), the event-response blocks in App Inventor spell out the
behaviors you’re trying to create in a plain, understandable fashion. In this case, we’re
essentially saying, “Hey, App Inventor, when someone taps the kitty button, play the
meow sound.”

Test your app Check to make sure everything is working
properly—it’s important to test your app each time you add
something new. Tap the button on the device (or click it if you
are using the emulator). You should hear the kitty meow.
Congratulations, your first app is running!  

14 Chapter 1:   HelloPurr

Chapter 1, HelloPurr



ADDING A PURR

Now we’re going to make the kitty purr and meow when you tap the button. We’ll
simulate the purr by making the device vibrate. That might sound hard, but in fact, it’s
easy to do because the Sound component we used to play the meow sound can make
the device vibrate, as well. App Inventor helps you tap into this kind of core device
functionality without having to deal with how the device actually vibrates. You don’t
need to do anything different in the Designer; you can just add a second function call
block to the button click in the Blocks Editor:

1. Go to the Blocks Editor and click Sound1 to open the drawer.

2. Select call Sound1.Vibrate and drag it under the call Sound1.Play block in
the Button1.Click slot. The block should click into place, as shown in
Figure 1-12. If it doesn’t, try dragging it so that the little notch on the top edge of
call Sound1.Vibrate touches the little bump on the bottom of call
Sound1.Play.

Figure 1-12. Playing the sound and vibrating on the Click event

15Adding Behaviors to the Components

Adding Behaviors to the Components



3. You might have noticed that the call Sound1.Vibrate block includes the text
“millisecs” at the lower right, and alongside it is an open socket protruding
inward from the block’s edge. An open socket in a block means that you need to
plug something into it to specify more about how the behavior should work. In
this case, you must tell the Vibrate block how long it should vibrate. You need
to specify this time in thousandths of a second (milliseconds), which is pretty
common for many programming languages. So, to make the device vibrate for
half a second, you need to enter a value of 500 milliseconds. To do that, you
need to grab a number block. Click the Math drawer and you’ll see a list of blue
blocks appear, as shown in Figure 1-13.

Figure 1-13. Opening the Math drawer

4. At the top of the list, you should see a block with a “0” in it. You can drag this
block out and then change the 0 to any number you want. Go ahead and drag
out the number block, as shown in Figure 1-14.

16 Chapter 1:   HelloPurr

Chapter 1, HelloPurr



Figure 1-14. Choosing a number block (0 is the default value)

5. Click the 0 and type the new value, 500, as shown in Figure 1-15.

Figure 1-15. Changing the value to 500

6. Plug the 500 number block into the socket on the right side of call
Sound1.Vibrate, as shown in Figure 1-16.

Figure 1-16. Plugging the value 500 into the millisecs socket

Test your app Try it! Tap the button on the device, and you’ll
feel the purr for half a second.  

SHAKING THE DEVICE

Now, let’s add a final element that taps into another cool feature of Android: making
the kitty meow when you shake the device. To do this, you’ll use a component called
AccelerometerSensor that can sense when you shake or move the device around.

17Adding Behaviors to the Components

Adding Behaviors to the Components



1. In the Designer, in the Palette components list, expand the Sensors area and
drag out an AccelerometerSensor. Don’t worry about where you drag it. As
with any non-visible component, no matter where you place it in the Viewer, it
will move to the “Non-visible components” section at the bottom of the
Viewer.

2. You’ll want to treat someone shaking the device as a different, separate event
from the button click. This means that you need a new event handler. Go to the
Blocks Editor. There should be a new drawer for AccelerometerSensor1. Open
it and drag out the AccelerometerSensor1.Shaking block. It should be the
second block in the list.

3. Just as you did with the sound and the button click, drag out a call
Sound1.Play block and fit it into the gap in AccelerometerSensor1.Shaking. Try
it out by shaking the device.

Figure 1-17 shows the blocks for the completed HelloPurr app. 

Figure 1-17. The blocks for HelloPurr  

Downloading the App to Your Android Device
App Inventor’s live testing feature allows you to easily test the app while connected to
your device. The only problem is that if you disconnect your device from App
Inventor, the app running on the device will stop, and you won’t find the app
anywhere on the device because it was never truly installed; it was just running within
the App Inventor Companion app.

You can download and install the completed app so that it works on any device,
even when it’s not connected to the computer. To get ready for this, first set the app’s

18 Chapter 1:   HelloPurr

Chapter 1, HelloPurr



1 There are many QR Code scanners for Android. If you don’t have one on your device, go to the Play Store
and install one.

icon so that when you install it on a device, it will appear with a distinguishing picture
in the list of apps. You can do this in the Designer by selecting the Screen component,
clicking its Icon property, and then uploading an image file as the icon (e.g., the
picture of the kitty).

Next, ensure that your device allows apps to be downloaded from places other
than the Android Market. For most Android devices, you do this by going to
Settings→Applications, and then checking the box next to “Unknown sources.”

Then, back in App Inventor, in the Designer, click Build, and select “App (provide QR
code for .apk).” You should see a “Progress Bar” message in the window, a process that
takes up to a minute. When the QR Code for the finished app is displayed, scan it onto
your device with a Barcode Scanner app.1 After scanning the QR Code, the device
might prompt you to enter your password for your Google account. When you finish
entering your password, your app will begin downloading to your device and you’ll
see a download icon in your device’s notifications. Go to your notifications, wait until
the download completes, and then choose the app to install it.

After you’ve installed it, look at the apps available on your device, and you’ll now
see HelloPurr, the app we just built. You run it just like any other app. (Make sure that
you run your new app, not the App Inventor Companion application.) You can now
stop the Companion app or unplug your device from the computer, and your new
packaged application will still be there.

It’s important to understand that this means your packaged app is now separate
from the project on App Inventor. You can do more work on the project in App
Inventor by connecting the device with the AI Companion as before. But that won’t
change the packaged app that is now installed on your device. If you make further
changes to your app in App Inventor, you’ll want to package the result and download
the new version to replace the old one on the device.

Sharing the App
You can share your app in a couple of ways. To share the executable app (the .apk file),
first click Build and choose “Application (save to my computer).” This will create a file
with a .apk extension on your computer. You can share this file with others by sending
it to them as an email attachment, which they’ll then open with their email app on
their device. Or you can upload the .apk file somewhere on the Web (e.g., on
Dropbox). Just be sure to let the people installing your app know that they need to

19Sharing the App

Sharing the App



allow “unknown sources” in their device’s Application settings in order to install apps
that aren’t from the Android Market.

You can also create a QR code for the app so that people can scan it onto their
device from the Web or even a physical poster. There are numerous tools that will
generate a QR code from a URL  (e.g., check out qrcode.kaywa.com). You can then cut
and paste the QR code into a web page or document for printing and posting.

You can also share the source code (blocks) of your app with another App Inventor
developer. To do this, click My Projects, check the app that you want to share (in this
case, HelloPurr), and then select Project→Export Selected Project. The file created on
your computer will have a .aia extension. You can send this file by email to someone,
and they can open App Inventor, choose Project→Import project, and then select
the .aia file. This will give the user a complete copy of your app, which can then be
edited and customized without affecting your version.

App Inventor will soon have its own App gallery where you can share your apps
and remix the apps from developers all over the world. 

Variations
After you build the apps in this book, you’ll likely think of ways to improve them. At
the end of each chapter, we’ll also suggest customization ideas for you to try.
Customizing the apps will lead you to explore the available components and blocks,
and learn to program on your own without the detailed instructions provided in the
tutorials.

Here are a couple of things to try for HelloPurr:

• As you shake the device, the meows will sound strange, as if they are echoing.
That’s because the accelerometer sensor is triggering the shaking event many
times a second in response to each individual up and down movement, so the
meows are overlapping. If you look at the Sound component in the Designer,
you’ll see a property called Minimum Interval. This property determines how
close together successive sounds can start. It’s currently set at a little under half
a second (400 milliseconds), which is less than the duration of a single meow.
By adjusting the minimum interval, you can change how much the meows
overlap. 

• If you run the packaged app and walk around with the device in your pocket,
your device will meow every time you move suddenly, something you might
find embarrassing. Android apps are typically designed to keep running even
when you’re not looking at them; your app continues to communicate with the
accelerometer and the meow just keeps going. To really quit the app, bring up

20 Chapter 1:   HelloPurr

Chapter 1, HelloPurr

http://qrcode.kaywa.com


HelloPurr and press the device’s menu button. You’ll be offered an option to
stop the application. Select this to close the app completely. 

Summary
Here are some of the concepts we covered in this chapter:

• You build apps by selecting components in the Designer, and then in the Blocks
Editor, you tell the components what to do and when to do it.

• Some components are visible and some aren’t. The visible ones appear in the
user interface of the app. The non-visible ones do things such as play sounds.

• You define components’ behavior by assembling blocks in the Blocks Editor.
You first drag out an event handler, such as Button1.Click, and then place
command blocks like Sound.Play within it. Any blocks within Button1.Click
will be performed when the user taps the button.

• Some commands need extra information to make them work. An example is
Vibrate, which needs to know how many milliseconds to vibrate for. These
values are called arguments or parameters.

• Numbers are represented as number blocks. You can plug these into commands
that take numbers as arguments.

• App Inventor has sensor components. The AccelerometerSensor can detect
when the device is moved or shaken. 

• You can package the apps you build and download them to the phone, where
they run independently of App Inventor.

21Summary

Summary




