
CHAPTER 24

Communicating with Web APIs

Mobile technology and the ubiquitous nature
of the Web have changed the world we live in.
You can now sit in the park and do your
banking, search Amazon.com to find reviews
of the book you’re reading, and check Twitter
to see what people in every other park in the
world are thinking about. Mobile phones have
moved well past just calling and texting—
now you have instant access to the world’s
data, too.

You can use your phone’s browser to reach the
Web, but often the small screen and limited
speed of a mobile device can make this prob-
lematic. Custom apps, specially designed to
pull in small chunks of particularly suitable in-
formation from the Web, can provide a more attractive alternative to the mobile browser.

In this chapter, we’ll take a broader look at apps that source information from the Web.
You’ll start by creating an app that asks a website to generate a bar chart (image) of a
game player’s scores for display. Then we’ll discuss how TinyWebDB can be used to access
any type of data (not just images) from the Web, and we’ll provide a sample that accesses
stock data from Yahoo! Finance. Finally, we’ll discuss how you can create your own web
information sources that can be used by App Inventor apps.

Creativity is about remixing the world, combining (mashing) old ideas and content in
interesting new ways. Eminem popularized the music mashup when he set his Slim
Shady vocal over AC/DC and Vanilla Ice tracks. This kind of “sampling” is now com-
mon, and numerous artists—including Girl Talk and Negativland—focus primarily on
creating new tracks from mashing old content.

334  Chapter 24:  Communicating with Web APIs

The web and mobile world are no different: websites and apps remix content from
various data sources, and most sites are now designed with such interoperability
in mind. An illustrative example of a web mashup is Housing Maps (http://www.
housingmaps.com), pictured in Figure 24-1, which takes apartment rental information
from Craigslist (http://www.craigslist.org) and mashes it with the Google Maps API.

Figure 24-1. Housing Maps mashes information from Craigslist and Google Maps

Mashups like Housing Maps are possible because services like Google Maps provide
both a website and a corresponding web service API. We humans visit http://maps
.google.com/ in a browser, but apps like Housing Maps communicate machine to
machine with the Google Maps API. Mashups process the data, combine it with data
from other sites (e.g., Craigslist), and then present it in new and interesting ways.

Just about every popular website now provides this alternative, machine-to-machine
access. The program providing the data is called a web service, and the protocol for
how a client app should communicate with the service is called an application pro-
grammer interface, or API. In practice, the term API is used to refer to the web service
as well.

The Amazon Web Service (AWS) was one of the first web services, as Amazon realized
that opening its data for use by third-party entities would eventually lead to more
books being sold. When Facebook launched its API in 2007, many people raised their
eyebrows. Facebook’s data isn’t book advertisements, so why should it let other apps
“steal” that data and potentially draw many users away from the Facebook site (and
its advertisements!). But its openness led Facebook toward becoming a platform in-
stead of just a site—meaning that other programs, like FarmVille, could build on and
tap into Facebook’s functionality—and no one can argue with its success today. By
the time Twitter launched in 2009, API access was an expectation, not a novelty, and
Twitter acted accordingly. Now, as shown in Figure 24-2, most websites offer both an
API and a human interface.

http://maps.google.com/
http://maps.google.com/

Talking to Web APIs That Generate Images  335 

Website

Client appClient app

Web UI

API

Figure 24-2. Most websites provide both a human interface and an API for client apps

So the Web is one thing to us average humans—a collection of sites to visit. To
programmers, it is the world’s largest and most diverse database of information.
Machine-to-machine communication is now poised to outpace human–machine
communication on the Web!

Talking to Web APIs That Generate Images
As we saw in Chapter 13 (“Amazon at the Bookstore”), most APIs accept requests
in the form of a URL and return data (typically in standard formats like XML, or
Extensible Markup Language; and JSON, JavaScript Object Notation). For these APIs,
you use the TinyWebDB component to communicate, a topic we’ll discuss in greater
detail later in the chapter.

Some APIs, however, don’t return data; they return a picture. In this section, we’ll dis-
cuss how you can communicate with these image-generating APIs in order to extend
App Inventor’s user interface capabilities.

The Google Chart API is such a service. Your app can send it some data within a URL,
and it will send back a chart that you can display in your app. The service creates
many types of charts, including bar charts, pie charts, maps, and Venn diagrams. The
Chart API is a great example of an interoperable web service whose purpose is to
enhance the capabilities of other sites. Since App Inventor doesn’t provide much in
terms of visualization components, the ability to leverage a service like the Chart API
is crucial.

336  Chapter 24:  Communicating with Web APIs

The first thing to do is to understand the format of the URL you should send to the
API. If you go to the Google Chart API site (http://code.google.com/apis/chart), you
will see the overview shown in Figure 24-3.

Figure 24-3. The Google Chart API generates numerous types of charts

The site includes complete documentation and a wizard to interactively create charts
and explore how to build the URLs. The wizard is especially helpful, because you can
use a form to specify the kind of chart you want and then examine the URL that the
wizard generates to reverse-engineer what you want to send it for your specific data.

Go ahead and play around with the website and the wizard and build some charts,
and then take a look at the details of the URLs used to build them. For example, if
you enter the following URL in a browser:

http://chart.apis.google.com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=
A2C180&chtt=Vertical+bar+chart&chd=t:10,50,60,80,40,60,30

you’ll get the chart shown in Figure 24-4.

Talking to Web APIs That Generate Images  337 

Figure 24-4. Google’s Chart API generates this chart from the URL

To understand the rather complicated-looking URL specified previously, you need to
understand how URLs work. In your browsing experience, you’ve probably noticed
URLs with question marks (?) and ampersands (&). The ? character specifies that the
first parameter of the URL request is coming. The & character then separates each
succeeding parameter. Each parameter has a name, an equals sign, and a value. So
the sample URL is calling the Chart API (http://chart.apis.google.com/chart) with the
parameters listed in Table 24-1.

Table 24-1. The Chart API utilizes a URL with these parameters

Parameter Value Meaning

cht bvg The chart type is bar, vertical, grouped.

chxt y Show the numbers on the y-axis.

chbh a Width/spacing is automatic.

chs 300x225 The size of the chart in pixels.

chco A2C180 The bar colors in hexadecimal notation.

chd t:10,50,60,80,40,60,30 The data of the chart, with basic text format (t).

chtt Vertical+bar+chart The chart title; a + character indicates a space.

By modifying the parameters, you can generate various graphs. For more information
on the types of graphs you can create, check out the API documentation at http://
code.google.com/apis/chart/index.html.

Setting the Image.Picture Property to a Chart API
Now you know how to type the sample Chart API URL into a web browser to see
the chart that is generated. To get a chart to appear in an app, you’ll need to set the
Picture property of an Image component to that same URL. To explore this, do the
following:

338  Chapter 24:  Communicating with Web APIs

1. Create a new app with a screen title of “Sample Chart App”.

2. Add an Image component with a Width of “Fill parent” and Height of 300.

3. Set the Image.Picture property to the sample URL (http://chart.apis.google.
com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=A2C180&chtt=Vert
ical+bar+chart&chd=t:10,50,60,80,40,60,30). You can’t set the property in the
Component Designer, as it only allows you to upload a file. But you can set it in
the Blocks Editor, as shown in Figure 24-5, so add a Screen.Initialize event han-
dler and set the Image.Picture property there (note that you can’t copy and
paste on some machines, so you’ll have to type out the full URL).

Figure 24-5. When the app starts, it sets the picture to a chart returned from the Chart API URL

You should see the image in Figure 24-6 on your
phone or emulator.

Building a Chart API URL Dynamically
The preceding example shows how you can get a
generated chart in your app, but it uses a URL with
fixed data (10,50,60,80,40,60,30). Generally, you’ll
show dynamic data in your chart—that is, data stored
in your variables. For example, in a game app, you
might show the user’s previous scores, which are
stored in a variable Scores.

To create such a dynamic chart, you must build the
URL for the Chart API and load your variable data into
it. In the sample URL, the data for the chart is fixed
and specified in the parameter chd (chd stands for
chart data):
chd=t:10,50,60,80,40,60,30

To build your scores chart dynamically, you’ll start with the fixed part, chd=t:, and
then step through the Scores list, concatenating each score to the text (along with a
comma). Figure 24-7 shows a complete solution.

Figure 24-6. The chart in an app

Talking to Web APIs That Generate Images  339 

Figure 24-7. Dynamically building a URL to send to the Chart API

340  Chapter 24:  Communicating with Web APIs

Let’s examine the blocks more closely, because there’s a lot going on in here, much of
which we’ve covered in previous chapters. To understand such code, it’s important to
envision some real data. So let’s assume the user has played three games in this app
and that the variable Scores has three items: 11, 22, and 15.

The blocks in Figure 24-8 define a variable chdParam to store the part of the URL that
will contain the chd data. The first row of blocks initializes the text of the chdParam
from the list of Scores.

Figure 24-8. Beginning the chd parameter with “chd=t:” and the first score

After these blocks are performed, chdParam will contain chd=t:11, as 11 is the first
value of the Scores list.

The next set of blocks, shown in Figure 24-9, adds the rest of the scores to the
chdParam.

Figure 24-9. Adding the successive scores to the chdParam variable

We use a while block in this example instead of a foreach because foreach only allows
you to do the same thing to each item. Here, we want to insert commas before the
second item and any items that come after it (but not the first). With while, we can

Talking to Web Data APIs   341 

put the first item in (Figure 24-8) and then loop starting from the second item, always
inserting a comma before the item (make sure not to put a space afterward). For
more information on while and foreach, see Chapter 20.

An index is used to keep track of where we are in the Scores list. On each iteration,
make text adds a comma and the next item in Scores. After these blocks are per-
formed, the chdParam will contain chd=t:11,22,15. We have built the chd parameter
dynamically! (And we’ve also built it so that if more scores are added beyond these
first three, it will still work.)

The blocks’ last job is to concatenate the chd parameter with the rest of the Chart API
URL, as shown in Figure 24-10.

Figure 24-10. Setting the picture to the full URL, including the chd parameter just built

The blocks set the ScoreChartImage.Picture property to this full URL: http://chart
.apis.google.com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=A2C180&chtt=
Game+Scores&chd=t:11,22,15. Your users will see something similar to what is shown
in Figure 24-11.

You could add such a display to any game or app by
adding blocks similar to this example. You could also
talk to other APIs that generate images and bring
those into your app as well. The key is that App
Inventor provides a useful connection to the Web
through the Image component.

Talking to Web Data APIs
The Google Chart API is a web API that responds to
requests by returning a picture. More commonly, APIs
will return data that an app can process and use how-
ever it wants. The “Amazon at the Bookstore” app in
Chapter 13, for instance, returns data in the form of a
list of books, with each book including a title, current
lowest price, and ISBN.

Figure 24-11. The dynamically
generated chart

http://chart.apis.google.com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=A2C180&chtt=Game+Scores&chd=t:11,22,15
http://chart.apis.google.com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=A2C180&chtt=Game+Scores&chd=t:11,22,15
http://chart.apis.google.com/chart?cht=bvg&chxt=y&chbh=a&chs=300x225&chco=A2C180&chtt=Game+Scores&chd=t:11,22,15

342  Chapter 24:  Communicating with Web APIs

To talk to an API from an App Inventor app, you don’t need to build a URL, as we
did with the Chart API example. Instead, you query the API much like you would a
web database (Chapter 22): just send your request as the tag to the TinyWebDB.
GetValue block. The TinyWebDB component takes care of actually generating the
URL that you send to the API.

TinyWebDB does not provide access to all APIs, even those that return a standard
data format such as RSS. TinyWebDB can only talk to web services for which an App
Inventor “wrapper” service, with a particular protocol, has been created. Fortunately,
a number of these services have been created already, and more will soon follow. You
can find some of these at http://appinventorapi.com.

Exploring the Web Interface of an API
In this section, you’ll learn how to use TinyWebDB to bring in stock price data from
the App Inventor–compliant API at http://yahoostocks.appspot.com. If you go to the
site, you’ll see the web (human) interface of the service pictured in Figure 24-12.

Figure 24-12. The web interface of the App Inventor–compliant Yahoo! Finance API

Try entering “IBM” or some other stock symbol into the Tag input box. The web page
returns current stock information as a list, with each item representing a different
piece of information, as described in the numerical listing further down the page.

Note that this web interface isn’t meant as a new or interesting way to find stock
information; its sole purpose is to allow programmers to explore the API for commu-
nicating with the underlying machine-to-machine web service.

Talking to Web Data APIs   343 

Accessing the API Through TinyWebDB
The first step in creating an app that talks to the preceding web service is to drag a
TinyWebDB component into the Component Designer. There is only one property
associated with TinyWebDB, its ServiceURL, shown in Figure 24-13. By default, it is
set to a default web database, http://appinvtinywebdb.appspot.com. Since we want to
instead access the Yahoo! Stocks API, set this property to http://yahoostocks.appspot
.com, the same URL you entered at the browser address bar earlier to see the web
page interface.

The next step is to make a TinyWebDB.GetValue call to
request data from the site. You might do this in response to
the user entering a stock symbol and clicking a Submit
button in your app’s UI, or you might do it in the Screen
.Initialize event to bring in information about a particular
stock right when the app is opened. In any case, when you
call GetValue, you should set the tag to a stock symbol, as
illustrated in Figure 24-14, just as you did at the http://
yahoostocks.appspot.com website.

Figure 24-14. Requesting stock information

As we covered in Chapter 10’s MakeQuiz app and in Chapter 22’s discussion of data-
bases, the TinyWebDB communication is asynchronous: your app requests the data
with TinyWebDB.GetValue and then goes about its business. You must provide a
separate event handler, TinyWebDB.GotValue, to program the steps the app should
take when the data actually comes back from the web service. From our examination
of the human interface of http://yahoostocks.appspot.com, we learned that the data
returned from GetValue is a list, with particular list items representing different data
about the stock (e.g., item 2 is the latest price).

A client app can use some or all of the data the service provides. For example, if you
just wanted to display the current stock price and its change since the day’s opening,
you might configure blocks as shown in Figure 24-15.

Figure 24-13. The
ServiceURL is set to http://
yahoostocks.appspot.com

http://yahoostocks.appspot.com
http://yahoostocks.appspot.com

344  Chapter 24:  Communicating with Web APIs

Figure 24-15. Using the GotValue event to process the data that arrives from Yahoo!

If you check the API specification at http://yahoostocks.appspot.com, you’ll see that
the second item in the returned list is indeed the current price, and the fifth item is
the change since stocks began trading that day. This app simply extracts those items
from what is returned by the API, and shows them in the labels PriceLabel and
ChangeLabel. Figure 24-16 provides a snapshot of the app in action.

Figure 24-16. The Stocks App in action

Creating Your Own App Inventor–Compliant APIs  345 

Creating Your Own App Inventor–Compliant APIs
TinyWebDB is the bridge from an App Inventor app to the Web. It lets App Inventor
programmers talk to web services with the simple tag-value protocol inherent in
the GetValue function. You send a particular tag as the parameter, and a list or text
object is returned as the value. In this way, the App Inventor programmer is shielded
from the difficult programming required to parse (understand and extract data from)
standard data formats like XML or JSON.

The tradeoff is that App Inventor apps can talk only to web services that follow
TinyWebDB’s expected protocol—it expects data to be returned in a very specific
way, and the API has to provide its data accordingly. App Inventor doesn’t have a
component for accessing an arbitrary web service that returns standard data formats
such as XML or JSON. If there isn’t an App Inventor–compliant API already available,
someone with the ability to write a web program must create it.

In the past, building APIs was difficult because you not only needed to understand
the programming and web protocols, but you also needed to set up a server to host
your web service, and a database to store the data. Now it’s much easier, as you
can leverage cloud-computing tools like Google’s App Engine and Amazon’s Elastic
Compute Cloud to immediately deploy the service you create. These platforms will
not only host your web service, but they’ll also let thousands of users access it before
charging you a single dime. As you can imagine, these sites are a great boon to
innovation.

Customizing Template Code
Writing your own API may seem daunting, but the good news is that you don’t need
to start from scratch. You can leverage some provided template code that makes
it especially easy to create App Inventor–compliant APIs. The code is written in the
Python programming language and uses Google’s App Engine. The template pro-
vides boilerplate code for getting the data into the form that App Inventor needs,
and a function, get_value, that you can customize.

You can download the template code and instructions for deploying it on Google’s
App Engine servers at http://appinventorapi.com/using-tinywebdb-to-talk-to-an-api/.
You might notice that the link takes you to the same appinventorapi .com site that was
used in Chapter 21 to create a custom web database. Building an API is similar, only
instead of just storing and retrieving data, you’ll call some other service to access the
data you need.

To create your own web API, you’ll download the template, modify a few key places
in the code, and then upload it to App Engine. Within minutes, you will have your
own API that can be called using TinyWebDB in an App Inventor app.

http://appinventorapi.com/using-tinywebdb-to-talk-to-an-api/

346  Chapter 24:  Communicating with Web APIs

Here’s the particular code from the template that you’ll need to customize (don’t
worry about the text that comes after the # symbol; like the comments in App
Inventor, it just describes what the code following it is doing):

def get_value(self, tag):
 #For this simple example, we just return hello:tag, where tag is sent in by client
 value="hello:"+tag
 value = "\""+value+"\"" # add quotes if the value is has multiple words
 if self.request.get('fmt') == "html":
 WriteToWeb(self,tag,value)
 else:
 WriteToPhone(self,tag,value)

This code is for a function (same as a procedure in App Inventor) called get_value,
and it’s indeed the code that is invoked when your app calls an API with the
TinyWebDB.GetValue function. tag is a parameter of the function and corresponds
to the tag you send in the GetValue call.

The bolded code is the part you’ll change. By default, it simply takes the tag sent
in with the request and sends back “hello tag.” (In other words, if you call this code
with the tag “joe,” it returns “hello joe”). It does this by setting the variable value,
which is then sent to the function WriteToWeb if the request came from the Web, or
WriteToPhone if the request came from a phone.

Note. Even if you’ve never looked at Python or other programming
code, you may find the sample above somewhat readable from your
experience with App Inventor. The “def get_value...” line defines a
procedure, the “value=...” lines are setting the variable “value” to
something, and the “if.. “ statements should look familiar. The fun-
damental concepts are the same, its just text instead of blocks.

To customize the template, you replace the bold code with any computation you
want, as long as that code places something in the variable value. Often, your API
will make a call to another API (this is called “wrapping” a call—more specifically, your
get_value function will make the call to some other API).

Many APIs are complicated, with hundreds of functions and complex user authoriza-
tion schemes. Others, however, are quite simple, and you can even find sample code
for accessing them on the Web, as you’ll see in the next section.

Creating Your Own App Inventor–Compliant APIs  347 

Wrapping the Yahoo! Finance API
The Yahoo! Stocks API for App Inventor used in this chapter was created by modify-
ing the template code above with code found through a simple web search. As the
goal was wrapping the Yahoo! Stocks API for use by App Inventor, the developer
(Wolber) did a web search for “Python Yahoo Stocks API”. From the site http://www
.gummy-stuff.org/Yahoo-data.htm, he found that a URL in the form:

http://download.finance.yahoo.com/d/quotes.csv?f=sl1d1t1c1ohgv&e=.cs v&s=IBM

would return a text file with a single comma-separated string of data. The preceding
URL returns this text string:

"IBM",140.85,"10/15/2010","3:00pm",-0.65,142.10,142.10,140.60,4974553

He then found some Python code for accessing the Yahoo! Stocks API at http://www
.goldb.org/ystockquote.html. With some quick cutting and pasting and a bit of edit-
ing, the App Inventor wrapper API was created by modifying the template in the
following manner:

def get_value(self, tag):
 # Need to generate a string or list and send it to WriteToPhone/ WriteToWeb
 # Multi-word strings should have quotes in front and back
 # e.g.,
 # value = "\""+value+"\""
 # call the Yahoo Finance API and get a handle to the file that is returned
 quoteFile=urllib.urlopen("http://download.finance.yahoo.com/d/quotes.csv?f=
 sl1d1t1c1ohgv&e=.csv&s="+tag)
 line = quoteFile.readline() # there's only one line
 splitlist = line.split(",") # split the data into a list
 # the data has quotes around the items, so eliminate them
 i=0
 while i<len(splitlist):
 item=splitlist[i]
 splitlist[i]=item.strip('"') # remove " around strings
 i=i+1
 value=splitlist
 if self.request.get('fmt') == "html":
 WriteToWeb(self,tag,value)
 else:
 WriteToPhone(self,tag,value)

The bolded code calls the Yahoo! API within the urllib.urlopen function call (this
is one way to call APIs from the Python language). The URL has a parameter, f, that
specifies the type of stock data you want (this parameter is something like the cryptic
parameters required by the Google Chart API). The data returned from Yahoo! is then
put into the variable line. The rest of the code splits up the items into a list, removes
the quotation marks around each item, and sends the result to the requester (either
the web interface or an App Inventor app).

http://www.gummy-stuff.org/Yahoo-data.htm
http://www.gummy-stuff.org/Yahoo-data.htm
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.google.com/url?q=http%3A%2F%2Fdownload.finance.yahoo.com%2Fd%2Fquotes.csv%3Ff%3Dsl1d1t1c1ohgv%26e%3D.csv%26s%3DIBM&sa=D&sntz=1&usg=AFQjCNEHEw-0eXvgSjERve4NJgC3PTBcFQ
http://www.goldb.org/ystockquote.html
http://www.goldb.org/ystockquote.html

348  Chapter 24:  Communicating with Web APIs

Summary
Most websites and many mobile apps are not standalone entities; they rely on the in-
teroperability of other sites to do their jobs. With App Inventor, you can build games,
quizzes, and other standalone apps, but soon enough, you’ll encounter issues related
to web access. Can I write an app that tells me when the next bus will arrive at my
usual stop? Can I write an app that texts a special subset of my Facebook friends?
Can I write an app that sends tweets? App Inventor provides two hooks to the Web:
(1) you can set the Image.Picture property to a URL to bring in a (generated) image,
and (2) you can use TinyWebDB to access data in a specially designed web API.

App Inventor does not provide arbitrary access to APIs. Instead, the system relies
on programmers to create “wrapper” APIs that follow a particular protocol. Once
created, these APIs are available to App Inventor app programmers using the same
TinyWebDB.GetValue scheme they use to access databases. Actually writing APIs is
certainly a bigger hurdle than writing apps in App Inventor, but if you’re interested
in learning how, be sure to check out some Python books and courses (O’Reilly has a
few of those!), and you’ll be on your way.

