
CHAPTER 22

Working with Databases

Facebook has a database of every
member’s account information, friends
list, and posts. Amazon has a database of
just about everything you can buy.
Google has a database of information
about every page in the World Wide Web.
Though not to this scale, almost every
nontrivial app you can create will have a
database component.

In most programming environments,
building an app that communicates with
a database is an advanced programming

technique: you have to set up a server with database software like Oracle or MySQL and
then write code that interfaces with that database. In universities, such programming is
generally not taught until an upper-level software engineering or database course.

App Inventor does the heavy lifting for you when it comes to databases (and lots of other
useful things!). The language provides components that reduce database communica-
tion to simple store and get operations. You can create apps that store data directly on
the Android device, and with some setup, you can create apps that share data with other
devices and people by storing it in a centralized web database.

The data in variables and component properties is short-term: if the user enters some
information in a form and then closes the app, that information will be gone when
the app is reopened. To store information persistently, you must store it in a data-
base. The information in databases is said to be persistent because even when you
close the app and reopen it, the data is still available.

As an example, consider Chapter 4’s No Texting While Driving app, which sends an
autoresponse to texts that come in when the user is busy. This app lets the user enter
a custom message to be sent in response to incoming texts. If the user changes the
custom message to “I’m sleeping; stop bugging me” and then closes the app, the
message should still be “I’m sleeping; stop bugging me” when the app is reopened.
Thus, the custom message must be stored in a database, and every time the app is
opened, that message must be retrieved from the database back into the app.

306  Chapter 22:  Working with Databases

Storing Persistent Data in TinyDB
App Inventor provides two components to facilitate database activity: TinyDB and
TinyWebDB. TinyDB is used to store persistent data directly on the Android device;
this is useful for highly personalized apps where the user won’t need to share her
data with another device or person, as in No Texting While Driving. TinyWebDB, on
the other hand, is used to store data in a web database that can be shared among
devices. Being able to access data from a web database is essential for multiuser
games and apps where users can enter and share information (like the MakeQuiz
app in Chapter 10).

The database components are similar, but TinyDB is a bit simpler, so we’ll explore it
first. With TinyDB, you don’t need to set up a database at all; the data is stored in a
database directly on the device and associated with your app.

You transfer data to long-term memory with the TinyDB.StoreValue block, as shown
in Figure 22-1, which comes from the No Texting While Driving app.

Figure 22-1. The TinyDB.StoreValue block stores data to the device’s long-term memory

A tag-value scheme is used for database storage. In Figure 22-1, the data is tagged
with the text “responseMessage.” The value is some text the user has entered for the
new custom response—say, “I’m sleeping; stop bugging me.”

The tag gives the data you’re storing in the database a name —a way to reference
the information—while the value is the data itself. You can think of the tag as a key
that you’ll use later when you want to retrieve the data from the database.

Likewise, you can think of an App Inventor TinyDB database as a table of tag-value
pairs. After the TinyDB1.StoreValue in Figure 22-1 is executed, the device’s database
will have the value listed in Table 22-1.

Table 22-1. The value stored in the databases

Tag Value

responseMessage I’m sleeping; stop bugging me

Retrieving Data from TinyDB  307 

An app might store many tag-value pairs for the various data items you wish to be
persistent. The tag is always text, while the value can be either a single piece of infor-
mation (a text or number) or a list. Each tag has only one value; every time you store
to a tag, it overwrites the existing value.

Retrieving Data from TinyDB
You retrieve data from the database with the TinyDB.GetValue block. When you call
GetValue, you request particular data by providing a tag. For the No Texting While
Driving app, you can request the custom response using the same tag as we used
in the StoreValue, “responseMessage.” The call to GetValue returns the data, so you
must plug it into a variable.

Often, you’ll retrieve data from the database when the app opens. App Inventor
provides a special event handler, Screen.Initialize, which is triggered when the
app starts up. The general pattern is to call GetValue, put the returned data into a
variable, and then check to see if the database indeed returned some information.
This check is important, because generally the first time you run the app, there is no
database data yet (e.g., the first time No Texting While Driving runs, the user hasn’t
yet entered a custom response).

The blocks in Figure 22-2, for the Screen.Initialize of No Texting While Driving, are
indicative of how many apps will load data on initialization.

The blocks put the data returned from GetValue into the variable response and then
check if response has a length greater than 0. If it does, then the database did return
a nonempty custom response, and it should be put in the ResponseLabel. If the
length of the value returned is 0, it means no data with a tag of “responseMessage”
has been stored, so no action is necessary.

Figure 22-2. A template for loading database data when the app launches

308  Chapter 22:  Working with Databases

Storing and Sharing Data with TinyWebDB
The TinyDB component stores data in a database located directly on the Android
device. This is appropriate for personal-use apps that don’t need to share data
among users. For instance, many people might download the No Texting While
Driving app, but there’s no need for the various people using the app to share their
custom responses with others.

Of course, many apps do share data: think of Facebook, Twitter, and popular mul-
tiuser games such as Words with Friends. For such data-sharing apps, the database
must live on the Web, not the device. The MakeQuiz/TakeQuiz apps from Chapter
10 provide another example: a person on one phone creates a quiz and stores it in a
web database so that a person on another phone can load the quiz and take it.

TinyWebDB is the web counterpart to TinyDB. It allows you to write apps that store
data on the Web, using a StoreValue/GetValue protocol similar to that of TinyDB.

By default, the TinyWebDB component stores data using a web database set up by
the App Inventor team and accessible at http://appinvtinywebdb.appspot.com. That
website contains a database and “serves” (responds to) web requests for storing and
retrieving data. The site also provides a human-readable web interface that a data-
base administrator (you) can use to examine the data stored there.

To explore the web database, open a browser to http://appinvtinywebdb.appspot.com
and check out some of the tag-value data stored there.

This default database is for development only; it is limited in size and accessible to all
App Inventor programmers. Because any App Inventor app can store data there, you
have no assurance that another app won’t overwrite your data!

If you’re just exploring App Inventor or in early the stages of a project, the default
web database is fine. But if you’re creating an app for real deployment, at some point
you’ll need to set up your own web database. Since we’re just exploring right now,
we’ll use the default web database. Later in the chapter, you’ll learn how to create
your own web database and configure TinyWebDB to use it instead.

In this section, we’ll build a voting app (depicted in
Figure 22-3) to illustrate how TinyWebDB works. The app
will have the following features:

• Users are prompted to enter their email address each
time the app loads. That account name will be used
to tag the user’s vote in the database.

• Users can submit a new vote at any time. In this case,
their old vote will be overwritten.

• Users can view the votes from everyone in the group.

Figure 22-3. A Voting app that
stores votes to TinyWebDB

http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com

Storing Data with TinyWebDB  309 

• For the sake of simplicity, the issue being voted on is determined outside the app,
such as in a classroom setting in which the teacher announces the issue and asks
everyone to vote electronically. (Note that this example could be extended to
allow users to prompt votes by posting issues to vote on from within the app.)

Storing Data with TinyWebDB
The TinyWebDB.StoreValue block works the same as TinyDB.StoreValue, only the
data is stored on the Web. For our voting sample, assume the user can enter a vote
in a text box named VoteTextBox and click a button named VoteButton to submit
the vote. To store the vote to the web database so others can see it, we’ll code the
VoteButton.Click event handler like the example in Figure 22-4.

Figure 22-4. Using the VoteButton.Click event handler to store a vote to the database

The tag used to identify the data is the user’s email, which has previously been stored
in the variable myEmail (we’ll see this later). The value is whatever the user entered in
VoteTextBox. So, if the user email was wolber@gmail.com and his vote was “Obama,”
the entry would be stored in the database as shown in Table 22-2.

Table 22-2. The tag and value for the vote are recorded in the database

tag value

wolber@gmail.com Obama

The TinyWebDB.StoreValue block sends the tag-value pair over the Web to the data-
base server at http://appinvtinywebdb.appspot.com. Because it’s the default service,
it shows lots of data from various apps, so you may or may not see your app’s data in
the initial window that appears. If you don’t see your data, there is a /getValue link
that allows you to search for data with a particular tag.

Test your app. As you program with TinyWebDB, use the web
interface of the database server to test that data is being stored as
you expect.

310  Chapter 22:  Working with Databases

Requesting and Processing Data with TinyWebDB
Retrieving data with TinyWebDB is more complicated than with TinyDB. With TinyDB,
the GetValue operation immediately returns a value because your app is commu-
nicating with a database directly on the Android device. With TinyWebDB, the app is
requesting data over the Web, so Android requires a two-step scheme for handling it.

With TinyWebDB, you request the data with GetValue and then process it later in a
TinyWebDB.GotValue event handler. TinyWebDB.GetValue should really be called
“RequestValue” because it just makes the request to the web database and doesn’t
actually “get” a value from it right away. To see this more clearly, check out the dif-
ference between the TinyDB.GetValue block (Figure 22-5) and the TinyWebDB.
GetValue block (Figure 22-6).

Figure 22-5. The TinyDB.GetValue block

Figure 22-6. The TinyWebDB.GetValue block

The TinyDB.GetValue block returns a value right away, and thus a plug appears on
its left side so that the returned value can be placed into a variable or property. The
TinyWebDB.GetValue block does not return a value immediately, so there is no plug
on its left side.

Instead, when the web database fulfills the request and the data arrives back at the
device, a TinyWebDB.GotValue event is triggered. So you’ll call TinyWebDB.GetValue
in one place of your app, and then you’ll program the TinyWebDB.GotValue event
handler to specify how to handle the data when it actually arrives. An event handler
like TinyWebDB.GotValue is sometimes called a callback procedure, because some
external entity (the web database) is in effect calling your app back after processing
your request. It’s like ordering at a busy coffee shop: you place your order and then
wait for the barista to call your name to actually go pick up your drink. In the mean-
time, she’s been taking orders from everyone else in line too (and those people are
all waiting for their names to be called as well).

GetValue-GotValue in Action  311 

GetValue-GotValue in Action
For our sample app, we need to store and retrieve a list of the voters who have the
app, as the ultimate goal is to show the votes of all users.

The simplest scheme for retrieving list data is to request the data when the app
launches, in the Screen.Initialize event, as shown in Figure 22-7. (In this example,
we’ll just call the database with the tag for “voterlist.”)

Figure 22-7. Requesting data in the Screen1.Initialize event

When the list of voters arrives from the web database, the TinyWebDB1.GotValue
event handler will be triggered. Figure 22-8 shows some blocks for processing the
returned list.

Figure 22-8. Using the GotValue event handler to process the returned list

The valueFromWebDB argument of GotValue holds the data returned from the data-
base request. Event arguments like valueFromWebDB have meaning only within the
event handler that invokes them (they are considered local to the event handler), so
you can’t reference them in other event handlers.

It may seem a bit counterintuitive, but once you get used to the idea of arguments
holding local data, you’re probably already thinking about something that can
handle data more globally (anywhere in an app): variables. Given that, it makes sense
that GotValue’s key job is to transfer the data returned in valueFromWebDB into a
variable. In this case, the data is transferred into the variable voterList, which you’ll
use in another event handler.

312  Chapter 22:  Working with Databases

The if block in the event handler is also often used in conjunction with GotValue, the
reason being that the database returns an empty text (“”) in valueFromWebDB if there
is no data for the requested tag—most commonly, when it’s the first time the app
has been used. By asking if the valueFromWebDB is a list, you’re making sure there is
some data actually returned. If the valueFromWebDB is the empty text (the if test is
false), you don’t put it into voterList.

Note that get data, check data, set data (into a variable) is the same pattern you used
in the preceding TinyDB example, but here you are expecting a list, so you use a
slightly different test.

A More Complex GetValue/GotValue Example
The blocks in Figure 22-8 are a good model for retrieving data in a fairly simplistic
app. In our voting example, however, we need more complicated logic. Specifically:

• The app should prompt the user to enter his email address when the program
starts. We can use a Notifier component for this, which pops up a window. (You
can find the Notifier in the “Other stuff” palette in the Designer.) When the user
enters his email, we’ll store it in a variable.

• Only after determining the user’s email should we call GetValue to retrieve the
voter list. Can you figure out why?

Figure 22-9 shows the blocks for this more complicated scheme for requesting the
database data.

Figure 22-9. In this more complex scheme, GetValue is called after getting the user’s email

On startup (Screen1.Initialize), a Notifier component prompts the user to enter
his email. When the user enters it (Notifier.AfterTextInput), his entry is put into a
variable and label, and then GetValue is called to get the list of voters. Note that
GetValue isn’t called directly in Screen.Initialize because we need the user’s email
to be set first.

So, with these blocks, when the app initializes, it prompts the user for his email
and then calls GetValue with a tag of “voterlist.” When the list arrives from the Web,
GotValue will be triggered. Here’s what we want to happen:

GetValue-GotValue in Action  313 

• GotValue should check if the data that arrives is nonempty (someone has used
the app and initiated the voter list). If there is data (a voter list), we should check
if our particular user’s email is already in the voter list. If it’s not, it should be
added to the list, and the updated list should be stored back to the database.

• If there isn’t yet a voter list in the database, we should create one with the user’s
email as the only item.

Figure 22-10 shows the blocks for this behavior.

The blocks first ask if a nonempty voter list came back from the database by calling
is a list?. If so, the data is put into the variable voterList. Remember, voterList will
have emails for everyone who has used this app. But we don’t know if this particular
user is in the list yet, so we have to check. If the user is not yet in the list, he is added
with add item to list, and the updated list is stored to the web database.

Figure 22-10. Using the GotValue blocks to process the data returned from the database and perform
different actions based on what is returned

314  Chapter 22:  Working with Databases

The “else-do” part of the ifelse block is invoked if a list wasn’t returned from the web
database; this happens if nobody has used the app yet. In this case, a new voterList
is created with the current user’s email as the first item. This one-item voter list is then
stored to the web database (with the hope that others will join as well!).

Requesting Data with Various Tags
The voting app thus far manages a list of an app’s users. Each person can see the
emails of all the other users, but we haven’t yet created blocks for retrieving and
displaying each user’s vote.

Recall that the VoteButton allowed the user to submit a vote with a tag-value pair
of the form “email: vote.” If two people had used the app and voted, the pertinent
database entries would look something like Table 22-3.

Table 22-3. The tag-value pairs stored in the database

tag value

voterlist [wolber@gmail.com, joe@gmail.com]

wolber@gmail.com Obama

joe@gmail.com McCain

When the user clicks on the ViewVotes button, the app should retrieve all votes from
the database and display them. Supposing the voter list has already been retrieved
into the variable voterList, we can use a foreach to request the vote of each person
in the list, as shown in Figure 22-11.

Figure 22-11. Using a foreach block to request the vote of each person in the list

Setting Up a Web Database  315 

Here we initialize a variable, currentVotesList, to an empty list, as our goal is to
add the up-to-date votes from the database into this list. We then use foreach to call
TinyWebDB1.GetValue for every email in the list, sending the email (voterEmail)
as the tag in the request. Note that the votes won’t actually be added to current-
VotesList until they arrive via a series of GotValue events.

Processing Multiple Tags in TinyWebDB.GotValue
Now that we want to display the votes in our app, things get a bit more complicated
yet again. With the requests from ViewVotesButton, TinyWebDB.GotValue will now
be returning data related to all the email tags, as well as the “voterlist” tag used to
retrieve the list of user emails. When your app requests more than one item from the
database with different tags, you need to code TinyWebDB.GotValue to handle all
possible requests. (You might think that you could try to code multiple GotValue event
handlers, one for each database request—can you figure out why this won’t work?)

To handle this complexity, the GotValue event handler has a tagFromWebDB argument
that tells you which request has just arrived. In this case, if the tag is “voterlist,” we
should continue to process the request as we did previously. If the tag is something
else, we can assume it’s the email of someone in the user list, stemming from the re-
quests triggered in the ViewVotesButton.Click event handler. When those requests
come in, we want to add the data—the voter and vote—to the current VotesList
so we can display it to the user.

Figure 22-12 shows the entire TinyWebDB.GotValue event handler.

Setting Up a Web Database
As we mentioned earlier in the chapter, the default web database at http://appinvtiny
webdb.appspot.com is intended for prototyping and testing purposes only. Before you
deploy an app with real users, you need to create a database specifically for your app.

You can create a web database using the instructions at http://appinventorapi.com/
program-an-api-python/. This site was set up by one of the authors (Wolber) and
contains sample code and instructions for setting up App Inventor web databases
and APIs. The instructions point you to some code that you can download and use
with only a minor modification to a configuration file. The code you’ll download is
the same as that used for the default web database set up by App Inventor. It runs
on Google’s App Engine, a cloud computing service that will host your web database
on Google’s servers for free. By following the instructions, you can have your own pri-
vate web database (that is compliant with App Inventor’s protocols) up and running
within minutes and begin creating web-enabled mobile apps that use it.

http://appinvtinywebdb.appspot.com
http://appinvtinywebdb.appspot.com

316  Chapter 22:  Working with Databases

Figure 22-12. The TinyWebDB.GotValue event handler

Once you create and deploy your own custom web database (at which point,
you’ll know the URL for it), you can create apps that use it. For an app to use your
custom database, you’ll need to change a property in the TinyWebDB component,
ServiceURL, so the component knows to store and retrieve data from your new
custom database. Figure 22-13 illustrates how to do this.

Summary  317 

In this example, the ServiceURL is set to http://usfweb
service.appspot.com, a web database that one of the
authors set up for his students’ apps (the end of
“appspot.com” is cut off in the text box in Figure 22-13).
Once the ServiceURL is set, all TinyWebDB.
StoreValue and TinyWebDB.GetValue calls will be
sent to the specified URL.

Summary
App Inventor makes it easy to store data persistently through its TinyDB and
TinyWebDB components. Data is always stored as a tag-value pair, with the tag
identifying the data for later retrieval. Use TinyDB when it is appropriate to store
data directly on the device. When data needs to be shared across phones (e.g., for a
multiplayer game or a voting app), you’ll need to use TinyWebDB instead. TinyWebDB
is more complicated because you need to set up a callback procedure (the GotValue
event handler), as well as a web database service.

Once you get the hang of working with databases—especially the key get data, check
data, set data pattern—you’ll be building more complex apps in no time!

Figure 22-13. Changing the
ServiceURL property to the URL
of your custom database

http://usfwebservice.appspot.com
http://usfwebservice.appspot.com

