
CHAPTER 20

Repeating Blocks: Iteration

One thing computers are good at is repeating 
operations—like little children, they never tire 
of repetition. They are also very fast and can do 
things like process your entire list of Facebook 
friends in a microsecond.

In this chapter, you’ll learn how to program repetition with just a few blocks instead 
of copying and pasting the same blocks over and over. You’ll learn how to do things 
like send an SMS text to every phone number in a list and sort list items. You’ll also 
learn that repeat blocks can significantly simplify an app.

Controlling an App’s Execution: Branching and Looping
In previous chapters, you learned that you define an app’s behavior with a set of 
event handlers: events and the functions that should be executed in response. You 
also learned that the response to an event is often not a linear sequence of functions 
and can contain blocks that are performed only under certain conditions.

Repeat blocks are the other way in which an app behaves 
nonlinearly. Just as if and ifelse blocks allow a program to 
branch, repeat blocks allow a program to loop; that is, to 
perform some set of functions and then jump back up in the 
code and do it again, as illustrated in Figure 20-1.

When an app executes, a program counter working beneath 
the hood of the app keeps track of the next operation to 
be performed. So far, you’ve examined apps in which the 
program counter starts at the top of an event handler and 
(conditionally) performs operations top to bottom. With 
repeat blocks, the program counter loops back up in the 
blocks, continuously repeating functions.

Function 1

Function 2

Function 3

Figure 20-1. Repeat blocks 
cause a program to loop



282  Chapter 20:  Repeating Blocks: Iteration

In App Inventor, there are two types of repeat blocks: foreach and while.foreach is 
used to specify functions that should be performed on each item of a list. So, if you have 
a list of phone numbers, you can specify that a text should be sent to each number in 
the list.

The while block is more general than the foreach. With it, you can program blocks 
that continually repeat until some arbitrary condition changes. while blocks can be 
used to compute mathematical formulas such as adding the first n numbers or com-
puting the factorial of n. You can also use while when you need to process two lists 
simultaneously; foreach processes only a single list at a time.

Repeating Functions on a List Using foreach
In Chapter 18, we discussed a Random Call app. Randomly calling one friend might 
work out sometimes, but if you have friends like mine, they don’t always answer. A 
different strategy would be to send a “Missing you” text to all of your friends and see 
who responds first (or more charmingly!).

With such an app, clicking a button sends a text to more than one friend. One way to 
implement this would be to simply copy the blocks for texting a single number, and 
then copy and paste them for each friend you want to text, as shown in Figure 20-2.

Figure 20-2. Copying and pasting the blocks for each phone number to be texted

This “brute force” copy-paste method is fine if you have just a few blocks to repeat. 
But data lists, such as the list of your friends, tend to change. You won’t want to have 
to modify your app with the copy-paste method each time you add or remove a 
phone number from your list.

The foreach block provides a better solution. You define a phoneNumbers list variable 
with all the numbers and then wrap a foreach block around a single copy of the blocks 
you want to perform. Figure 20-3 shows the foreach solution for texting a group.



Repeating Functions on a List Using foreach  283 

Figure 20-3. Using the foreach block to perform the same blocks for each item in the list

This code can be read as:

For each item (phone number) in the list phoneNumbers, set the Texting object’s 
phone number to the item and send out the text message.

When you drag out a foreach block, you must specify the list to process by plugging 
a reference into the “in list” parameter at the bottom of the block. In this case, the 
global phoneNumbers block was dragged out of the My Definitions palette and 
plugged in to provide the list of phone numbers to text.

At the top of the foreach block, you also provide a name for a placeholder variable 
that comes with the foreach. By default, this placeholder is named “var.” You can 
leave it that way or rename it. One common name for it is “item,” as it represents the 
current item being processed in the list.

The blocks within the foreach are repeated for each item in the list, with the place-
holder variable (in this example, item) always holding the item currently being 
processed. If a list has three items, the inner blocks will be executed three times. The 
inner blocks are said to be subordinate to, or within, the foreach block. We say that 
the program counter “loops” back up when it reaches the bottom block within the 
foreach.

A Closer Look at Looping
Let’s examine the mechanics of the foreach blocks in detail, because understanding 
loops is fundamental to programming. When the TextGroupButton is clicked and 
the event handler invoked, the first operation executed is the set Texting1.Message to 
block, which sets the message to “Missing you.” This block is only executed once.

The foreach block then begins. Before the inner blocks of a foreach are executed, 
the placeholder variable item is set to the first number in the phoneNumbers list 
(111–1111). This happens automatically; the foreach relieves you of having to manu-
ally call select list item. After the first item is selected into the variable item, the 
blocks within the foreach are executed for the first time. The Texting1.PhoneNumber 
property is set to the value of item (111–1111), and the message is sent. 



284  Chapter 20:  Repeating Blocks: Iteration

After reaching the last block within a foreach (the Texting.SendMessage block), the 
app “loops” back up to the top of the foreach and automatically puts the next item 
in the list (222–2222) into the variable item. The two operations within the foreach 
are then repeated, sending the “Missing you” text to 222–2222. The app then loops 
back up again and sets item to the last item in the list (333–3333). The operations are 
repeated a third time, sending the third text.

Because the final item in the list—in this case, the third—has been processed, the 
foreach looping stops at this point. We say that control “pops” out of the loop, 
which means that the program counter moves on to deal with the blocks below the 
foreach. In this example, there are no blocks below it, so the event handler ends.

Writing Maintainable Code
To the end user, the foreach solution just described behaves exactly the same as the 
“brute force” method of copying and then pasting the texting blocks. From a pro-
grammer’s perspective, however, the foreach solution is more maintainable and can 
be used even if the data (the phone list) is entered dynamically.

Maintainable software is software that can be changed easily without introducing 
bugs. With the foreach solution, you can change the list of friends who are sent 
texts by modifying only the list variable—you don’t need to change the logic of your 
program (the event handler) at all. Contrast this with the brute force method, which 
requires you to add new blocks in the event handler when a new friend is added. 
Anytime you modify a program’s logic, you risk introducing bugs.

Even more important, the foreach solution would work even if the phone list was 
dynamic—that is, one in which the end user, not just the programmer, could add 
numbers to the list. Unlike our sample, which has three particular phone numbers 
listed in the code, most apps work with dynamic data that comes from the end user 
or some other source. If you redesigned this app so that the end user could enter the 
phone numbers, you would have to use a foreach solution, because when you write 
the program, you don’t know what numbers to put in the brute force solution.

A Second foreach Example: Displaying a List
When you want to display the items of a list on the phone, you can plug the list into 
the Text property of a Label, as shown in Figure 20-4.

Figure 20-4. The simple way to display a list is to plug it directly into a label



A Second foreach Example: Displaying a List  285 

When you plug a list directly into a Text property of a Label, the list items are 
displayed in the label as a single row of text separated by spaces and contained in 
parentheses: 

(111–1111 222–2222 333–3333)
The numbers may or may not span more than one line, depending on how many 
there are. The user can see the data and perhaps comprehend that it’s a list of phone 
numbers, but it’s not very elegant. List items are more commonly displayed on sepa-
rate lines or with commas separating them.

To display a list properly, you need blocks that transform each list item into a single 
text value with the formatting you want. Text objects generally consist of letters, dig-
its, and punctuation marks. But text can also store special control characters, which 
don’t map to a character you can see. A tab, for instance, is denoted by \t. (To learn 
more about control characters, check out the Unicode standard for text representa-
tion at http://www.unicode.org/standard/standard.html.) 

In our phone number list, we want a newline character, which is denoted by \n. When 
\n appears in a text block, it means “go down to the next line before you display the 
next thing.” So the text object “111–1111\n222–2222\n333–3333” would appear as:

111–1111
222–2222
333–3333

To build such a text object, we use a foreach block and “process” each item by add-
ing it and a newline character to the PhoneNumberLabel.Text property, as shown in 
Figure 20-5.

Figure 20-5. Using the foreach block to process the list and put a newline character before each item

Let’s trace the blocks to see how they work. As discussed in Chapter 15, tracing 
shows how each variable or property changes as the blocks are executed. With a 
foreach, we consider the values after each iteration; that is, each time the program 
goes through the foreach loop.



286  Chapter 20:  Repeating Blocks: Iteration

Before the foreach, the PhoneNumbersLabel is initialized to the empty text. When 
the foreach begins, the app automatically places the first item of the list (111–1111) 
into the placeholder variable number. The blocks in the foreach then make text 
with PhoneNumbersLabel.Text (the empty text), \n, and number, and set the result 
into PhoneNumbersLabel.Text. Thus, after the first iteration of the foreach, the 
pertinent variables store the values shown in Table 20-1.

Table 20-1. The values of the variables after the first iteration of foreach

number PhoneNumbersLabel.Text

111–1111 \n111–1111

Since the bottom of the foreach has been reached, control loops back up and the 
next item of the list (222–2222) is put into the variable number. When the inner 
blocks are repeated, make text concatenates the value of PhoneNumbersLabel 
.Text (\n111–1111) with \n, and then with number, which is now 222–2222. After 
this second iteration, the variables store the values shown in Table 20-2.

Table 20-2. The variable values after the second iteration of foreach

number PhoneNumbersLabel.Text

222–2222 \n111–1111\n222–2222

The third item of the list is then placed in number, and the inner block is repeated a 
third time. The final value of the variables, after this last iteration, is shown in Table 20-3.

Table 20-3. The variable values after the final iteration

number PhoneNumbersLabel.Text

333–3333 \n111–1111\n222–2222\n333–3333

So, after each iteration, the label becomes larger and holds one more phone number 
(and one more newline). By the end of the foreach, PhoneNumbersLabel.Text is set 
so that the numbers will appear as:

111–1111
222–2222
333–3333

Repeating Blocks with while 
The while block is a bit more complicated to use than foreach. The advantage of the 
while block lies in its generality: foreach repeats over a list, but while can repeat 
while any arbitrary condition is true. As a trivial example, suppose you wanted to text 
every other person in your phone list. You couldn’t do it with foreach, but with while, 
you could just increment the index by two instead of one each time.



Repeating Blocks with while   287 

As you learned in Chapter 18, a condition tests something and returns a value of ei-
ther true or false. while-do blocks include a conditional test, just like if blocks. If the 
test of a while evaluates to true, the app executes the inner blocks, and then loops 
back up and rechecks the test. As long as the test evaluates to true, the inner blocks 
are repeated. When the test evaluates to false, the app “pops” out of the loop (like we 
saw with the foreach block) and continues with the blocks below the while.

Using while to Synchronously Process Two Lists
A more instructive example of while and its generality involves situations in which 
you need to process two lists in a synchronous fashion. For example, in the MakeQuiz 
app (Chapter 10), you keep separate lists of the quiz questions and answers, along 
with an index variable to keep track of the current question number. To display each 
question-answer pair together, you need to iterate through the two lists in a synchro-
nous fashion, grabbing the indexth item of each. foreach only allows for traversing 
a single list, but with a while loop, you can use the index to grab an item from each 
list. Figure 20-6 illustrates using a while block to display the question-answer pairs 
on separate lines.

Figure 20-6. Using a while loop to display the question-answer pairs on separate lines

Because a while is used instead of a foreach, the blocks explicitly initialize the index, 
check for the end of the list, select the items in each loop, and increment the index. 



288  Chapter 20:  Repeating Blocks: Iteration

Using while to Compute a Formula
Here’s another example of while that repeats operations but has nothing to do with 
a list. What do you think the blocks in Figure 20-7 do, at a high level? One way to fig-
ure this out is to trace each block (see Chapter 15 for more on tracing), tracking the 
value of each variable as you go.

Figure 20-7. Can you figure out what these blocks are doing?

The blocks within the while loop will be repeated while the variable number is less 
than or equal to the variable N. For this app, N is set to a number that the end user 
enters in a text box (NTextBox). Say the user entered a 3. The variables of the app 
would look like Table 20-4 when the while block is reached.

Table 20-4. This is how the variables look when the while block is reached

N number total

3 1 0

The while block first asks: is number less than or equal to (<=) N? The first time this 
question is asked, the test is true, so execution proceeds within the while block. 
total is set to itself (0) plus number (1), and number is incremented. After the first 
iteration of the blocks within the while, the variable values are as listed in Table 20-5.

Table 20-5. The variable values after the first iteration of the blocks within the while block

N number total

3 2 1



Summary  289 

On second iteration, the test “number<=N” is still true (2<=3), so the inner blocks are 
executed again. total is set to itself (1) plus number (2). number is incremented. When 
this second iteration completes, the variables are as listed in Table 20-6.

Table 20-6. The variable values after the second iteration

N number total

3 3 3

The app loops back up again and tests the condition. Once again, it is true (3<=3), 
so the blocks are executed a third time. Now total is set to itself (3) plus number (3), 
so it becomes 6. number is incremented to 4, as shown in Table 20-7.

Table 20-7. The values after the third iteration

N number total

3 4 6

After this third iteration, control loops back one more time. Now the test 
“number<=N”, or 4<=3, evaluates to false. Thus, the inner blocks of the while are not 
executed again, and the event handler completes.

So what did these blocks do? They performed one of the most fundamental math-
ematical operations: counting numbers. Whatever number the user enters, the app 
will report the sum of the numbers 1..N, where N is the number entered. In this 
example, we assumed the user had entered 3, so the app came up with a total of 6. If 
the user had entered 4, the app would have calculated 10.

Summary
Computers are good at repeating the same function over and over. Think of all the 
bank accounts that are processed to accrue interest, all the grades processed to com-
pute students’ grade point averages, and countless other everyday examples where 
computers use repetition to perform a task. 

App Inventor provides two blocks for repeating operations. The foreach block ap-
plies a set of functions to each element of a list. By using it, you can design process-
ing code that works on an abstract list instead of concrete data. Such code is more 
maintainable, and it’s required if the data is dynamic.

Compared to foreach, while is more general: you can use it to process a list, but you 
can also use it to synchronously process two lists or compute a formula. With while, 
the inner blocks are performed continuously while a certain condition is true. After the 
blocks within the while are executed, control loops back up and the test condition is 
tried again. Only when the test evaluates to false does the while block complete. 




