NoteTaker

NoteTaker is an app that allows you to enter notes and see your previously entered notes. Itis an
example of an app with dynamic, user-generated data. The data is persistent, meaning if you close
the app and reopen it, the notes will still be there. The data is not shared amongst apps or users as
the notes are stored on the device, not on the web.

This lesson shows three iterations, each of them slightly more complex:
Iteration 1. The data is not persistent (saved in the database).

Iteration 2. The data is stored in a TinyDB database.
Iteration 3. The notes are timestamped.

Check out the app

My Notetaker

please enter a note (Subr/\‘ﬂ’ >

0 pushups
un 21, 2014 9:46:23 PM

un 21, 2014 9:46:00 PM

The app lets you enter notes in the top text box and then lists them in reverse-chronological order
in the blue notes area.

NoteTaker - 1

Create the user interface for the NoteTaker app

Display hidden components in Viewer

set Hint to
"please enter a
note"

SubmitButton
with image

Notes

NotesLabel, this
is where the list
will be displayed.

TinyDB is found in

the Storage
drawer. It is used

to store data

persistently.

Clock is used to

Non-visible components .
\ A timestamp notes

TinyDB1 Clockl

NoteTaker - 2

Iteration 1: A NoteTaker with no database

When the app starts, there are no notes, so use 'create empty list' J

malize global [) lo| create empty list

l check to make sure user entered J

something in text box

Add the entry to
the end of the list

Convert the list of notes into a text
string with \n used for new lines

o
BROS - listToText W list
result | |o| initialize local {[57-14) B — J

for each item, add it to the

front of the text string
get (553 - being built.
do | set (LETE 0 | (o join | get (RS

“[“{EJ'

Lreturn the resulting text to the ‘call listToText" block J

Create a global variable 'notes' to store the notes the user enters. Initialize it to 'create empty list'
because when the app starts, there aren't any notes yet. Program the SubmitButton.Click so that it
adds what the user has entered in the text box to the list. and displayes the updated list. Create a

procedure 'listToText which takes a list as a parameter and converts it into a text object with
multiple lines.

NoteTaker - 3

Iteration 2: Add TinyDB persistence so the notes are still there when the app is closed
and reopened.

initialize global ((* =) to | || create empty list

V1, -1 SubmitButton ~ i<
do |iol if o S| EntryTextBox ~ [Text ~
then | || additemstolist list | get ClLC it hd
(8 EntryTextBox ~ I Text ~ |
abel ~ I Text ~ AT

Now we store the updated list persistently, in
the database, so it will be there even if app is
closed. The tag names the data. The
valueToStore is the actual list.

to listToText list result... I —' When the app launches, call GetValue to bring the

database data into the app. If its the first time the

—— app has run, there won't be any data. In that case,
.Initialize the 'valuelfTagNotThere" value is returned, in this

case an empty list
to | call QITTEIED GetValue

‘NotesLabel ~ Bl Text ~ BB
list

At the bottom of SubmitButton.Click, add a call to TinyDB1.StoreValue to store the updated list of

notes. When the app is reopened, use TinyDB.GetValue to bring the notes back in from the
database into the variable 'notes'.

NoteTaker - 4

Iteration 3. Add a timestamp to each note-- the list becomes a list of lists.

initialize global |

o - Now when user enters a note, we add a
when ubmitButton ~ Fe < ‘note’ which has both the text and a
do ol if not is empty .

date/time. Its stored as a two-item sublist.

then | |o(additemstolist list | get CTLC L
L @ O] S Entry TextBox ~ M Text - |

call (oI5 E3 .FormatDateTime

instant

=1l Clock1 ~ T

{ Text

call Jili2:1E3 .StoreValue

tag
valueToStore

note text. index 2 is the
date/time of the note.

\ § N °Y listToText | list index 1 of the sublist is the J

do foreach(- Jinlist | get (353
do set [ELYUZEAto | ol join I (2) selectlistitem list | get (=10 ke

selectlistitem list | get [CISEITIES

s AV »
\n\n |

T N Y istAs Text -

when Screen1 .Initialize d...

The notes listis now a list of lists. Each 'note' is itself a two-item list with the first item being the text
of the note and the second item being the timestamp for the note. To test, you may need to clear
out the database of the MIT App Companion to get rid of the data that was formatted in a different

say (iteration 2). To do this, on your device, go to Settings | Applications, choose MIT Al2
Companion, and clear data.

NoteTaker - 5

	NoteTaker
	Check out the app
	Create the user interface for the NoteTaker app
	Iteration 1: A NoteTaker with no database
	Iteration 2: Add TinyDB persistence so the notes are still there when the app is closed and reopened.
	Iteration 3. Add a timestamp to each note-- the list becomes a list of lists.

