
Chapter 12

NXT Remote Control

In this chapter, you’ll create an app that turns your 
Android phone into a remote control for a LEGO 
MINDSTORMS NXT robot. The app will have 
buttons for driving the robot forward and back-
ward, turning left and right, and stopping. You’ll 
program it so the robot automatically stops if it 
detects an obstacle. The app will use the Bluetooth 
capabilities of the phone to communicate with the 
robot.

LEGO MINDSTORMS robots are fun to play with, 
but they are also educational. After-school 
programs use robots to teach elementary- and 
middle-school children problem-solving skills and 
introduce them to engineering and computer pro-
gramming. NXT robots are also used by kids aged 
9–14 in FIRST Lego League robotics competitions.

The NXT programmable robotics kit includes a main unit called the NXT Intelligent Brick. 
It can control three motors and four input sensors. You can assemble a robot from LEGO 
building elements, gears, wheels, motors, and sensors. The kit comes with its own soft-
ware to program the robot, but now you can use App Inventor to create Android applica-
tions to control an NXT using Bluetooth connectivity.

The application in this chapter is designed to work with a robot that has wheels and an 
ultrasonic sensor, such as the Shooterbot robot pictured here. The Shooterbot is often the 
first robot that people build with the LEGO MINDSTORMS NXT 2.0 set. It has left wheels 
connected to output port C, right wheels connected to output port B, a color sensor con-
nected to input port 3, and an ultrasonic sensor connected to input port 4.



188  Chapter 12:  NXT Remote Control

What You’ll Learn
This chapter uses the following components and concepts:

•	 The BluetoothClient component for connecting to the NXT.

•	 The ListPicker component to provide a user interface for connecting to the 
NXT.

•	 The NxtDrive component for driving the robot’s wheels.

•	 The NxtUltrasonicSensor component for using the robot’s ultrasonic sensor to 
detect obstacles.

•	 The Notifier component for displaying error messages.

Getting Started
You’ll need Android version 2.0 or higher to use the application in this chapter. Also, 
for security reasons, Bluetooth devices must be paired before they can connect to 
each other. Before you get started building the app, you’ll need to pair your Android 
with your NXT by following these steps:

1.	 On the NXT, click the right arrow until it says Bluetooth and then press the or-
ange square.

2.	 Click the right arrow until it says Visibility and then press the orange square.

3.	 If the Visibility value is already Visible, continue to step 4. If not, click the left or 
right arrow to set the value to Visible.

4.	 On the Android, go to Settings→Wireless & Networks.

5.	 Make sure the Bluetooth checkbox is checked.

6.	 Click “Bluetooth settings” and “Scan for devices.”

7.	 Under “Bluetooth devices,” look for a device named “NXT.”

Note. If you’ve ever changed your robot’s name, look for a device 
name that matches your robot’s name instead of “NXT.” 

8.	 If you see “Paired but not connected” under your robot’s name, you’re finished! 
Otherwise, continue to step 9.

9.	 If you see “Pair with this device” under your robot’s name, click it.

10.	 On the NXT, it should ask for a passkey. Press the orange square to accept 1234.



Designing the Components  189 

11.	 On the Android, it should ask for the PIN. Enter 1234 and press OK.

12.	 You should now see “Paired but not connected.” You’re finished!

Connect to the App Inventor website and start a new project. Name it 
“NXTRemoteControl” and set the screen’s title to “NXT Remote Control”. Open the 
Blocks Editor and connect to the phone.

Designing the Components
For this app, we’ll need to create and define behaviors for both non-visible and 
visible components.

Non-Visible Components
Before creating the user interface components, you’ll create some non-visible 
components, listed in Table 12-1 and illustrated in Figure 12-1, to control the NXT.

Table 12-1. Non-visible components for the Robot NXT controller app

Component type Palette group What you’ll name it Purpose 

BluetoothClient Other stuff BluetoothClient1 Connect to the NXT.

NxtDrive LEGO MINDSTORMS NxtDrive1 Drive the robot’s wheels.

NxtUltrasonicSensor LEGO MINDSTORMS NxtUltrasonicSensor1 Detect obstacles.

Notifier Other stuff Notifier1 Display error messages.

Figure 12-1. The non-visible components displayed at the bottom of the Component Designer

Set the properties of the components in the following way:

1.	 Set the BluetoothClient property of NxtDrive1 and NxtUltrasonicSensor1 to 
BluetoothClient1.

2.	 Check BelowRangeEventEnabled on NxtUltrasonicSensor1.

3.	 Set the DriveMotors property of NxtDrive1:

–– If your robot has the left wheel’s motor connected to output port C and the 
right wheel’s motor connected to output port B, then the default setting of 
“CB” doesn’t need to be changed.

–– If your robot is configured differently, set the DriveMotors property to a 
two-letter text value where the first letter is the output port connected to 
the left wheel’s motor and the second letter is the output port connected to 
the right wheel’s motor.



190  Chapter 12:  NXT Remote Control

4.	 Set the SensorPort property of NxtUltrasonicSensor1.

–– If your robot’s ultrasonic sensor is connected to input port 4, then the default 
setting of “4” doesn’t need to be changed.

–– If your robot is configured differently, set the SensorPort property to the 
input port connected to the ultrasonic sensor.

Visible Components
Now let’s create the user interface components shown in Figure 12-2.

Figure 12-2. The app in the Component Designer

To make the Bluetooth connection, you’ll need the unique Bluetooth address of the 
NXT. Unfortunately, Bluetooth addresses consist of eight 2-digit hexadecimal num-
bers (a way of representing binary values) separated by colons, making them very 
cumbersome to type. You won’t want to type in the address on your phone every 
time you run the app. So, to avoid that, you’ll use a ListPicker that displays a list of 
the robots that have been paired with your phone and lets you choose one.

You’ll use buttons for driving forward and backward, turning left and right, stopping, 
and disconnecting. You can use a VerticalArrangement to lay out everything except 
for the ListPicker, and a HorizontalArrangement to contain the buttons for turning 
left, stopping, and turning right.

You can build the interface shown in Figure 12-2 by dragging out the components 
listed in Table 12-2.



Designing the Components  191 

Table 12-2. Visible components for the Robot NXT controller app

Component type Palette group What you’ll name it Purpose 

ListPicker Basic ConnectListPicker Choose the robot to connect to.

VerticalArrangement Screen Arrangement VerticalArrangement1 A visual container.

Button Basic ForwardButton Drive forward.

HorizonalArrangement Screen Arrangement HorizonalArrangement1 A visual container.

Button Basic LeftButton Turn left.

Button Basic StopButton Stop.

Button Basic RightButton Turn right.

Button Basic BackwardButton Drive backward.

Button Basic DisconnectButton Disconnect from the NXT.

To arrange the visual layout as shown in Figure 12-2, place LeftButton, StopButton, 
and RightButton inside HorizontalArrangement1, and place ForwardButton, 
HorizontalArrangement1, BackwardButton, and DisconnectButton inside 
VerticalArrangement1.

Set the properties of the components in the following way:

1.	 Uncheck Scrollable on Screen1.

2.	 Set the Width of ConnectListPicker and DisconnectButton to “Fill parent.”

3.	 Set the Width and Height of VerticalArrangement1, ForwardButton, 
HorizontalArrangement1, LeftButton, StopButton, RightButton, and 
BackwardButton to “Fill parent.”

4.	 Set the Text of ConnectListPicker to “Connect…”.

5.	 Set the Text of ForwardButton to “^”.

6.	 Set the Text of LeftButton to “<”.

7.	 Set the Text of StopButton to “-”.

8.	 Set the Text of RightButton to “>”.

9.	 Set the Text of BackwardButton to “v”.

10.	 Set the Text of DisconnectButton to “Disconnect”.

11.	 Set the FontSize of ConnectListPicker and DisconnectButton to 30.

12.	 Set the FontSize of ForwardButton, LeftButton, StopButton, RightButton, 
and BackwardButton to 40.

In this application, it makes sense to hide most of the user interface until the Bluetooth 
is connected to the NXT. To accomplish this, uncheck the Visible property of 
VerticalArrangement1. Don’t worry—in a moment, we’ll make the application 
reveal the user interface after it connects to the NXT. 



192  Chapter 12:  NXT Remote Control

Adding Behaviors to the Components
In this section, you’ll program the behavior of the app, including:

•	 Letting the user connect the app to a robot by choosing it from a list.

•	 Letting the user disconnect the app from a robot.

•	 Letting the user drive the robot using the control buttons.

•	 Forcing the robot to stop when it senses an obstacle.

Connecting to the NXT
The first behavior you’ll add is connecting to the NXT. When you click 
ConnectListPicker, it will show a list of the paired robots. When you choose a 
robot, the app will make a Bluetooth connection to that robot.

Displaying the List of Robots
To display the list of robots, you’ll use ConnectListPicker. A ListPicker looks like a 
button, but when it’s clicked, it displays a list of items and lets you choose one.

You’ll use the BluetoothClient1.AddressesAndNames block to provide a list of the 
addresses and names of Bluetooth devices that have been paired with the Android. 
Because BluetoothClient1 is used with NXT components, it automatically limits the 
devices included in the AddressesAndNames property to those that are robots, so 
you won’t see other kinds of Bluetooth devices (like headsets) in the list. Table 12-3 
lists the blocks you’ll need for this step.

Table 12-3. Blocks to add a ListPicker to the app

Block type Drawer Purpose

ConnectListPicker 
.BeforePicking

ConnectListPicker Triggered when ConnectListPicker is clicked.

set ConnectListPicker 
.Elements to

ConnectListPicker Set the choices that will appear.

BluetoothClient1 
.AddressesAndNames

BluetoothClient1 The addresses and names of robots that have been paired 
with the Android.

How the blocks work
When ConnectListPicker is clicked, the ConnectListPicker.BeforePicking event is 
triggered before the list of choices is displayed, as shown in Figure 12-3. To specify 
the items that will be listed, set the ConnectListPicker.Elements property to the 
BluetoothClient1.AddressesAndNames block. ConnectListPicker will list the robots 
that have been paired with the Android.



Adding Behaviors to the Components  193 

Figure 12-3. Displaying the list of robots 

Test your app. On your phone, click “Connect…” and see what 
happens. You should see a list of all the robots your phone has been 
paired with. 

If you just see a black screen, your phone hasn’t been paired with any 
robots. If you see addresses and names of other Bluetooth devices, 
such as a Bluetooth headset, the BluetoothClient property of 
NxtDrive1 and NxtUltrasonicSensor1 has not been set properly.

Making the Bluetooth Connection
After you choose a robot from the list, the app will connect to that robot 
via Bluetooth. If the connection is successful, the user interface will change. 
ConnectListPicker will be hidden, and the rest of the user interface components 
will appear. If the robot is not turned on, the connection will fail and an error mes-
sage will pop up.

You’ll use the BluetoothClient1.Connect block to make the connection. The 
ConnectListPicker.Selection property provides the address and name of the cho-
sen robot.

You’ll use an ifelse block to test whether the connection was successful or not. The 
ifelse block has three different areas where blocks are connected: “test,” “then-do,” 
and “else-do.” The “test” area will contain the BluetoothClient1.Connect block. The 
“then-do” area will contain the blocks to be executed if the connection is successful. 
The “else-do” area will contain the blocks to be executed if the connection fails.



194  Chapter 12:  NXT Remote Control

If the connection is successful, you will use the Visible property to hide 
ConnectListPicker and show VerticalArrangement1, which contains the rest of 
the user interface components. If the connection fails, you will use the Notifier1​
.ShowAlert block to display an error message. Table 12-4 lists the blocks you’ll need 
for this behavior.

Table 12-4. Blocks for using Bluetooth to connect with the robot

Block type Drawer Purpose

ConnectListPicker.AfterPicking ConnectListPicker Triggered when a robot is chosen from  
ConnectListPicker.

ifelse Control Test whether the Bluetooth connection is 
successful.

BluetoothClient1.Connect BluetoothClient1 Connect to the robot.

ConnectListPicker.Selection ConnectListPicker The address and name of the chosen robot.

set ConnectListPicker.Visible to ConnectListPicker Hide ConnectListPicker.

false Logic Plug into set ConnectListPicker.
Visible to.

set VerticalArrangement1.Visible 
to

VerticalArrangement1 Show the rest of the user interface.

true Logic Plug into set VerticalArrangement1​
.Visible to.

Notifier1.ShowAlert Notifier1 Show an error message.

text ("Unable to make a Bluetooth connec-
tion.")

Text The error message.

How the blocks work
After a robot is picked, the ConnectListPicker.AfterPicking event is triggered, as 
shown in Figure 12-4. The BluetoothClient1.Connect block makes the Bluetooth 
connection to the selected robot. If the connection is successful, the “then-do” 
blocks are executed: the ConnectListPicker.Visible property is set to false to hide 
ConnectListPicker, and the VerticalArrangement1.Visible property is set to true to 
show VerticalArrangement1. If the connection fails, the “else-do” blocks are executed: 
the Notifier1.ShowAlert block displays an error message.



Adding Behaviors to the Components  195 

Figure 12-4. Making the Bluetooth connection

Disconnecting from the NXT
You’re probably excited about connecting your Android to your NXT, but before you 
do that, let’s do one more thing: add the behavior for disconnecting. That way, you’ll 
be able to test both connecting and disconnecting.

When DisconnectButton is clicked, the app will close the Bluetooth connection and 
the user interface will change. ConnectListPicker will reappear, and the rest of the 
user interface components will be hidden. 

Use the blocks listed in Table 12-5 to build the BluetoothClient1.Disconnect block 
that closes the Bluetooth connection. You will use the Visible property to show 
ConnectListPicker and hide VerticalArrangement1, which contains the rest of the 
user interface components.

Table 12-5. Blocks for disconnecting from the robot

Block type Drawer Purpose

DisconnectButton.Click DisconnectButton Triggered when DisconnectButton is clicked.

BluetoothClient1​.​ 
Disconnect

BluetoothClient1 Disconnect from the robot.

set ConnectListPicker.
Visible to

ConnectListPicker Show ConnectListPicker.

true Logic Plug into set ConnectListPicker.Visible to.

set VerticalArrangement​
1.Visible to

VerticalArrangement1 Hide the rest of the user interface.

false Logic Plug into set VerticalArrangement1.Visible 
to.



196  Chapter 12:  NXT Remote Control

How the blocks work
When DisconnectButton is clicked, the DisconnectButton.Clicked event is trig-
gered, as shown in Figure 12-5. The BluetoothClient1.Disconnect block closes the 
Bluetooth connection. The ConnectListPicker.Visible property is set to true to show 
ConnectListPicker, and the VerticalArrangement1.Visible property is set to false 
to hide VerticalArrangement1. 

Figure 12-5. Disconnecting from the robot

Test your app. Make sure your robot is turned on and then, on your 
phone, click “Connect…” and choose the robot you want to connect 
to. It will take a moment to make the Bluetooth connection. Once 
the robot connects, you should see the buttons for controlling the 
robot, as well as the Disconnect button.

Click the Disconnect button. The buttons for controlling the robot 
should disappear, and the Connect button should reappear.

Driving the NXT
Let’s get to the really fun part: adding behavior for driving forward and backward, 
turning left and right, and stopping. Don’t forget about stopping—if you do, you’ll 
have an out-of-control robot on your hands!

The NxtDrive component provides five blocks for driving the robot’s motors:

•	 MoveForwardIndefinitely drives both motors forward.

•	 MoveBackwardIndefinitely drives both motors backward.

•	 TurnCounterClockwiseIndefinitely turns the robot to the left by driving the 
right motor forward and the left motor backward.



Adding Behaviors to the Components  197 

•	 TurnClockwiseIndefinitely turns the robot to the right by driving the left motor 
forward and the right motor backward.

•	 Stop stops both motors.

The Move… and Turn… blocks each have a parameter called Power. You’ll use a 
number block, along with all the other items listed in Table 12-6, to specify the 
amount of power the robot should use to turn the motors. The value can range from 
0 to 100. However, if you specify too little power, the motors will make a whining 
sound but not turn. In this application, you’ll use 90 (percent).

Table 12-6. Blocks for controlling the robot

Block type Drawer Purpose

ForwardButton.Click ForwardButton Triggered when ForwardButton is clicked.

NxtDrive1.MoveForward​
Indefinitely

NxtDrive1 Drive the robot forward.

number (90) Math The amount of power.

BackwardButton.Click BackwardButton Triggered when BackwardButton is clicked.

NxtDrive1.MoveBackward​
Indefinitely

NxtDrive1 Drive the robot backward.

number (90) Math The amount of power.

LeftButton.Click LeftButton Triggered when LeftButton is clicked.

NxtDrive1.TurnCounter​Clock-
wiseIndefinitely

NxtDrive1 Turn the robot counterclockwise.

number (90) Math The amount of power.

RightButton.Click RightButton Triggered when RightButton is clicked.

NxtDrive1.TurnClock-
wiseIndefinitely

NxtDrive1 Turn the robot clockwise.

number (90) Math The amount of power.

StopButton.Click StopButton Triggered when StopButton is clicked.

NxtDrive1.Stop NxtDrive1 Stop the robot.

How the blocks work
When ForwardButton is clicked, the ForwardButton.Clicked event is triggered. The 
NxtDrive1.MoveForwardIndefinitely block shown in Figure 12-6 is used to move 
the robot forward at 90% power. The remaining events function similarly for the 
other buttons, each powering the robot backward, left, and right.



198  Chapter 12:  NXT Remote Control

Figure 12-6. Driving the robot

When StopButton is clicked, the StopButton.Clicked event is triggered. The 
NxtDrive1.Stop block is used to stop the robot.



Adding Behaviors to the Components  199 

Test your app. Follow the instructions in the previous “Test your 
app” section to connect to the NXT. Make sure the robot is not on a 
table where it could fall, and then test its behavior as follows:

1.  Click the forward button. The robot should move forward.

2.  Click the backward button. The robot should move backward.

3.  Click the left button. The robot should turn counterclockwise.

4.  Click the right button. The robot should turn clockwise.

5.  Click the stop button. The robot should stop.

If your robot doesn’t move, but you can hear a whining sound, you 
may need to increase the power. You can use 100 for maximum 
power.

Using the Ultrasonic Sensor to Detect Obstacles
Using the ultrasonic sensor, the robot will stop if it encounters an obstacle, like the 
culprit shown in Figure 12-7, within 30 centimeters.

Figure 12-7. A common household obstacle for your NXT robot

The NxtUltrasonicSensor component can be used to detect obstacles. It has two 
properties named BottomOfRange and TopOfRange that define the detection range 
in centimeters. By default, the BottomOfRange property is set to 30 centimeters and 
TopOfRange is set to 90 centimeters.



200  Chapter 12:  NXT Remote Control

The NxtUltrasonicSensor component also has three events called BelowRange, 
WithinRange, and AboveRange. The BelowRange event will be triggered when an ob-
stacle is detected at a distance below BottomOfRange. The WithinRange event will be 
triggered when an obstacle is detected at a distance between BottomOfRange and 
TopOfRange. The AboveRange event will be triggered when an obstacle is detected at 
a distance above TopOfRange.

You’ll use the NxtUltrasonicSensor1.BelowRange event block, shown in Table 12-7, 
to detect an obstacle within 30 centimeters. If you want to detect an obstacle within 
a different distance, you can adjust the BottomOfRange property. You’ll use the 
NxtDrive1.Stop block to stop the robot.

Table 12-7. Blocks for using the NxtUltrasonicSensor 

Block type Drawer Purpose

NxtUltrasonicSensor1​
.BelowRange

NxtUltrasonicSensor1 Triggered when the ultrasonic sensor detects an obstacle at a 
distance below 30 centimeters.

NxtDrive1.Stop NxtDrive1 Stop the robot.

How the blocks work
When the robot’s ultrasonic sensor detects an obstacle at a distance below 30 cen-
timeters, the NxtUltrasonicSensor1.BelowRange event is triggered, as shown in 
Figure 12-8. The NxtDrive1.Stop block stops the robot.

Figure 12-8. Detecting an obstacle

Test your app. Follow the instructions in the previous “Test your 
app” section to connect to the NXT. Using the navigation buttons, 
drive your robot toward an obstacle, such as a cat. The robot should 
stop when it gets within 30 centimeters of the cat.

If the robot doesn’t stop, the cat may have moved away from the 
robot before it got within 30 centimeters. You may need to test your 
app with an inanimate obstacle.



Variations  201 

Variations
After you get this application working—and you’ve spent enough time actually 
playing with your NXT robot—you might want to try:

•	 Varying the amount of power when driving the robot.

–– You can do this by changing the numeric value that you plug into 
the MoveForwardIndefinitely, MoveBackwardIndefinitely, 
TurnCounterclockwiseIndefinitely, and TurnClockwiseIndefinitely 
blocks.

•	 Using the NxtColorSensor to shine a red light when an obstacle is detected.

–– You can use an NxtColorSensor component and its GenerateColor 
property.

–– You’ll need to set the DetectColor property to false (or uncheck it in the 
Component Designer) because the color sensor cannot detect and generate 
color at the same time.

•	 Using an OrientationSensor to control the robot. 

•	 Using LEGO building elements to physically attach your phone to the robot. 
Create applications that make the robot autonomous.

Summary
Here are some of the concepts we’ve covered in this tutorial:

•	 The ListPicker component allows you to choose from a list of paired robots.

•	 The BluetoothClient component makes the connection to the robot.

•	 The Notifier component displays an error message.

•	 The Visible property is used to hide or show user interface components.

•	 The NxtDrive component can drive, turn, and stop the robot.

•	 The NxtUltrasonicSensor component is used to detect obstacles.




