
Chapter 8

Presidents Quiz

The Presidents Quiz is a trivia game 
about former leaders of the United 
States. Though this quiz is about 
presidents, you can use it as a tem-
plate to build quizzes on any topic. 

In the previous chapters, you’ve been 
introduced to some fundamental 
programming concepts. Now you’re 
ready for something more challenging. 
You’ll find that this chapter requires a 
conceptual leap in terms of program-
ming skills and abstract thinking. In 
particular, you’ll use two list variables to store the data—in this case, the quiz questions 
and answers—and you’ll use an index variable to track where the user is in the quiz. 
When you finish, you’ll be armed with the knowledge to create quiz apps and many other 
apps that require list processing.

This chapter assumes you’re familiar with the basics of App Inventor: using the 
Component Designer to build the user interface, and using the Blocks Editor to specify 
event handlers and program the component behavior. If you are not familiar with these 
fundamentals, be sure to review the previous chapters before continuing.

You’ll design the quiz so that the user proceeds from question to question by clicking 
a Next button and receives feedback on whether each answer he inputs is correct or 
incorrect.

What You’ll Learn
This app, shown in Figure 8-1, covers:

•	 Defining list variables for storing the questions and answers in lists.

•	 Sequencing through a list using an index; each time the user clicks Next, you’ll 
display the next question.



114  Chapter 8:  Presidents Quiz

•	 Using conditional (if) behaviors: performing certain operations only under spe-
cific conditions. You’ll use an if block to handle the app’s behavior when the user 
reaches the end of the quiz.

•	 Switching an image to show a different picture for each quiz question.

Figure 8-1. The Presidents Quiz running in the emulator

Getting Started
Connect to the App Inventor website and start a new project. Name it “PresidentsQuiz” 
and set the screen’s title to “Presidents Quiz”. Open the Blocks Editor and connect 
to the phone. Also download the pictures for the quiz from the book’s site (http://
examples.oreilly.com/0636920016632/) onto your computer: roosChurch.gif, nixon.gif, 
carterChina.gif, and atomic.gif. You’ll load these images into your project in the next 
section.

Designing the Components
The Presidents Quiz app has a simple interface for displaying the question and al-
lowing the user to answer. You can build the components from the snapshot of the 
Component Designer shown in Figure 8-2.

http://examples.oreilly.com/0636920016632
http://examples.oreilly.com/0636920016632


Designing the Components  115 

Figure 8-2. The Presidents Quiz in the Designer

To create this interface, first load the images you downloaded into the project. Click 
Add in the Media area and select one of the downloaded files (e.g., roosChurch.gif). 
Do the same for the other three images. Then add the components listed in Table 8-1.

Table 8-1. Components for the Presidents Quiz app

Component type Palette group What you’ll name it Purpose 

Image Basic Image1 The picture displayed with the question.

Label Basic QuestionLabel Display the current question.

Horizontal​
Arrangement

Screen Arrange-
ment

Horizontal​​ 
Arrangement1

Organize the AnswerPrompt and Text.

TextBox Basic AnswerText The user will enter his answer here.

Button Basic AnswerButton The user clicks this to submit an answer.

Label Basic RightWrongLabel Display “correct!” or “incorrect!”

Button Basic NextButton The user clicks this to proceed to the next question.

Set the properties of the components as follows:

1.	 Set Image1.Picture to the image file roosChurch.gif, the first picture that should 
appear. Set its Width to “Fill parent” and its Height to 200.

2.	 Set QuestionLabel.Text to “Question…” (you’ll input the first question in the 
Blocks Editor).

3.	 Set AnswerText.Hint to “Enter an answer”. Set its Text property to blank. Move 
it into HorizontalArrangement1.



116  Chapter 8:  Presidents Quiz

4.	 Change AnswerButton.Text to “Submit” and move it into Horizontal​
Arrangement1.

5.	 Change NextButton.Text to “Next”.

6.	 Change RightWrongLabel.Text to blank.

Adding Behaviors to the Components
You’ll need to program the following behaviors:

•	 When the app starts, the first question appears, including its corresponding 
image.

•	 When the user clicks the NextButton, the second question appears. When he 
clicks it again, the third question appears, and so on.

•	 When the user reaches the last question and clicks the NextButton, the first 
question should appear again.

•	 When the user answers a question, the app will report whether it is correct or not.

To start, you’ll define two list variables based on the items listed in Table 8-2: 
QuestionList to hold the list of questions, and AnswerList to hold the list of corre-
sponding answers. Figure 8-3 shows the two lists you’ll create in the Blocks Editor.

Table 8-2. Variables for holding question and answer lists

Block type Drawer Purpose

def variable ("QuestionList") Definitions Store the list of questions (rename it QuestionList).

def variable ("AnswerList") Definitions Store the list of answers (rename it AnswerList).

make a list Lists Insert the items of the QuestionList.

text (three of them) Text The questions.

make a list Lists Insert the items of the AnswerList.

text (three of them) Text The answers.

Figure 8-3. The lists for the quiz



Adding Behaviors to the Components  117 

Defining the Index Variable
The app needs to keep track of the current question as the user clicks the NextButton 
to proceed through the quiz. You’ll define a variable named currentQuestionIndex 
for this, and the variable will serve as the index into both the QuestionList and 
AnswerList. Table 8-3 lists the blocks you’ll need to do this, and Figure 8-4 shows 
what that variable will look like.

Table 8-3. Creating the index

Block type Drawer Purpose

def variable ("currentQuestionIndex") Definitions Hold the index (position) of the current question/answer.

number (1) Math Set the initial value of currentQuestionIndex to 1 (the 
first question).

Figure 8-4. Initiating the index blocks with a value of 1

Displaying the First Question
Now that you’ve defined the variables you need, you can specify the app’s interactive 
behavior. As with any app, it’s important to work incrementally and define one be-
havior at a time. To start, let’s think only about the questions—specifically, displaying 
the first question in the list when the app launches. We’ll come back and deal with 
the images a bit later.

You want your code blocks to work regardless of the specific questions that are in the 
list. That way, if you decide to change the questions or create a new quiz by copying 
and modifying this app, you’ll only need to change the actual questions in the list 
definitions, and you won’t need to change any event handlers. 

So, for this first behavior, you don’t want to refer directly to the first question, “Which 
president implemented the ‘New Deal’ during the Great Depression?” Instead, you 
want to refer, abstractly, to the first slot in the QuestionList (regardless of the 
specific question there). That way, the blocks will still work even if you modify the 
question in that first slot. 

You select particular items in a list with the select list item block. The block asks you 
to specify the list and an index (a position in the list). If a list has three items, you can 
enter 1, 2, or 3 as the index.

For this first behavior, when the app launches, you want to select the first item in 
QuestionList and place it in the QuestionLabel. As you’ll recall from the “Android, 
Where’s My Car?” app in Chapter 7, if you want something to happen when your app 
launches, you program that behavior in the Screen1.Initialize event handler using 
the blocks listed in Table 8-4. 



118  Chapter 8:  Presidents Quiz

Table 8-4. Blocks to load the initial question when the app starts

Block type Drawer Purpose

Screen1.Initialize Screen1 Event handler triggered when the app begins.

set QuestionLabel​
.Text to

QuestionLabel Put the first question in QuestionLabel.

select list item Lists Select the first question from QuestionList.

Global ​QuestionList My Definitions The list to select questions from.

number (1) Math Select the first question by using an index of 1.

How the blocks work
The Screen1.Initialize event is triggered when the app begins. As shown in 
Figure 8-5, the first item of the variable QuestionList is selected and placed into 
QuestionLabel.Text. So, when the app begins, the user will see the first question.

Figure 8-5. Selecting the first question

Test your app. Plug in your phone to the computer or click “New 
emulator” to open an Android emulator, and then click ”Connect 
to Device.” When your app loads, do you see the first item of 
QuestionList, “Which president implemented the ‘New Deal’ during 
the Great Depression?”

Iterating Through the Questions
Now program the behavior of the NextButton. You’ve already defined the current​
QuestionIndex to remember which question the user is on. When the user clicks the 
NextButton, the app needs to increment (add one to) the currentQuestionIndex (i.e., 
change it from 1 to 2 or from 2 to 3, and so on). You’ll then use the resulting value of 
currentQuestionIndex to select the new question to display.

As a challenge, see if you can build these blocks on your own. When you’re finished, 
compare your results against Figure 8-6.



Adding Behaviors to the Components  119 

Figure 8-6. Moving to the next question

How the blocks work
The first row of blocks increments the variable currentQuestionIndex. If current​
QuestionIndex has a 1 in it, it is changed to 2. If it has a 2, it is changed to 3, and so 
on. Once the currentQuestionIndex variable has been changed, the app uses it to 
select the new question to display.

When the user clicks NextButton for the first time, the increment blocks will change 
currentQuestionIndex from 1 to 2, so the app will select the second item from 
QuestionList, “Which president granted communist China formal recognition in 
1979?” The second time NextButton is clicked, currentQuestionIndex will be set 
from 2 to 3, and the app will select the third question in the list, “Which president 
resigned due to the Watergate scandal?”

Note. Take a minute to compare the blocks of NextButton.Click to 
those in the Screen.Initialize event handler. In the Screen.Initialize 
blocks, the app used select list item with a concrete number (1) 
to select the list item. In these blocks, you’re selecting the list item 
using a variable as the index. The app doesn’t choose the first item 
in the list, or the second or third; it chooses the currentQuestion​
Indexth item, and thus a different item will be selected each time 
the NextButton is clicked. This is a very common use for an index—
incrementing its value to find and display items in a list.

The problem with the app is that it simply increments to the next question each time 
without any concern for the end of the quiz. When currentQuestionIndex is already 
3 and the user clicks the NextButton, the app changes currentQuestionIndex from 
3 to 4. It then calls select list item to get the currentQuestionIndexth item—in this 



120  Chapter 8:  Presidents Quiz

case, the fourth item. Since there are only three items in the variable QuestionList, 
the Android device doesn’t know what to do and forces the app to quit. So how can 
we let the app know that it has reached the end of the quiz?

Test your app. Test the behavior of the NextButton to see if the app 
is working correctly. Click the NextButton on the phone. Does the 
phone display the second question, “Which president granted com-
munist China formal recognition in 1979?” It should, and the third 
question should appear when you click the NextButton again. But 
if you click again, you should see an error: “Attempting to get item 
4 of a list of length 3.” The app has a bug! Do you know what the 
problem is? Try figuring it out before moving on.

The app needs to ask a question when the NextButton is clicked, and execute differ-
ent blocks depending on the answer. Since you know your app contains three ques-
tions, one way to ask the question would be, “Is the variable currentQuestionIndex 
greater than 3?” If the answer is yes, you should set currentQuestionIndex back to 1 
so the user is taken back to the first question. The blocks you’ll need for this are listed 
in Table 8-5.

Table 8-5. Blocks for checking the index value for the end of the list

Block type Drawer Purpose

if Control Figure out if the user is on the last question.

= Math Test if currentQuestionIndex is 3.

global currentQuestion​
Index

My Definitions Put this into the left side of =.

number 3 Math Put this into the right side of = since 3 is the number of items in the list.

set global current​
Question​Index to

My Definitions Set to 1 to revert to the first question.

number 1 Math Set the index to 1.



Adding Behaviors to the Components  121 

Test your app. Because variables like currentQuestionIndex 
aren’t visible when you run an app, they are often the source of bugs 
in a program. Fortunately, App Inventor provides a way to “watch” 
variables during testing. Specifically, you can right-click a def ​
variable block and select Watch, and a little box will appear, show-
ing the value of the variable. In this case, right-click the def current​
QuestionIndex definition to watch it. Then click on the “Connect to 
Device...” button in the Blocks Editor to restart the app. The def current​
QuestionIndex block will appear with a watch box displaying the 
initial value of currentQuestionIndex (1), as shown in Figure 8-8.

Figure 8-8. Watching a variable while testing your app

Now pick up the phone and click the NextButton. The second ques-
tion, “Which president granted communist China formal recognition 
in 1979?” should appear in the QuestionLabel on the phone, as 
before. On the App Inventor screen, a 2 should appear in the current​
QuestionIndex watch box, as shown in Figure 8-9.

Figure 8-9. Confirming that the index is incrementing

When you click again, the third question should appear on the 
phone and a 3 should appear in the watch box. Now for the be-
havior you’re really testing: if you click again, you should see 1 in 
currentQuestionIndex, and the first question (“Which president 
implemented the ‘New Deal’ during the Great Depression?”) should 
appear on the phone.



122  Chapter 8:  Presidents Quiz

When the user clicks the NextButton, the app increments the index as it did before. 
But then, as shown in Figure 8-7, it checks to see if currentQuestionIndex is larger 
than 3, the number of questions. If it is larger than 3, currentQuestionIndex is set 
back to 1, and the first question is displayed. If it is 3 or less, the blocks within the if 
block are not performed, and the current question is displayed as usual. 

Figure 8-7. Checking if the last (third) question has been reached

Making the Quiz Easy to Modify
If your blocks for the NextButton work, pat yourself on the back—you are on your 
way to becoming a programmer! But what if you added a new question (and answer) 
to the quiz? Would your blocks still work? 

To explore this, first add a fourth question to QuestionList and a fourth answer into 
AnswerList, as shown in Figure 8-10.

Figure 8-10. Adding an item to both lists 



Making the Quiz Easy to Modify  123 

Test your app. Click the NextButton several times. You’ll notice that 
the fourth question never appears, no matter how many times you 
click Next.

Do you know what the problem is? Before reading on, see if you can 
fix the blocks so the fourth question appears.

The problem is that the test to determine whether the user is on the last question is 
too specific; it asks if the currentQuestionIndex variable is 3. You could just change 
the number 3 to a 4, and the app would work correctly again. The problem with that 
solution, however, is that each time you modify the questions and answers, you also 
have to remember to make this change. Such dependencies in a computer program 
often lead to bugs, especially as an app grows in complexity. 

A much better strategy is to design the blocks so that they will work no matter how 
many questions there are. Such generality makes it easier if you, as a programmer, 
want to customize your quiz for some other topic. It is also essential if the list you are 
working with changes dynamically—for example, think of a quiz app that allows the 
user to add new questions (you’ll build this in Chapter 10).

For a program to be more general, it can’t refer to concrete numbers like 3, as that 
only works for quizzes of three questions. So, instead of asking if the value of ​
currentQuestionIndex is larger than the specific number 3, ask if it is as large as the 
number of items in QuestionList. If the app asks this more general question, it will 
work even when you add to or remove items from the QuestionList. So modify the 
NextButton.Click event handler to replace the previous test that referred directly to 
3. You’ll need the blocks listed in Table 8-6. 

Table 8-6. Blocks to check the length of the list

Block type Drawer Purpose

length of list Lists Ask how many items are in QuestionList.

global Question​
List

My Definitions Put this into the “list” slot of length of list.

How the Blocks Work
The if test now compares the currentQuestionIndex to the length of the 
QuestionList, as shown in Figure 8-11. So, if currentQuestionIndex is 5, and the 
length of the QuestionList is 4, then the currentQuestionIndex will be set back 
to 1. Note that, because the blocks no longer refer to 3 or any specific number, the 
behavior will work no matter how many items are in the list.



124  Chapter 8:  Presidents Quiz

Figure 8-11. Checking for the end of the list in a generic way

Test your app. When you click the NextButton, does the app now 
cycle through the four questions, moving to the first one after the 
fourth?

Switching the Image for Each Question
Now that you’ve programmed all the behaviors for moving through the questions 
(and you’ve made your code smarter and more flexible by making it more abstract), 
let’s get the images working properly, too. Right now, the app shows the same image 
no matter what question is being asked. You can change this so an image pertaining 
to each question appears when the user clicks the NextButton. Earlier, you added 
four pictures as media for the project. Now, you’ll create a third list, PictureList, 
with the image filenames as its items. You’ll also modify the NextButton.Click event 
handler to switch the picture each time, just as you switch the question text each 
time. (If you’re already thinking about using the currentQuestionIndex here, you’re 
on the right track!)

First, create a PictureList and initialize it with the names of the image files. Be sure 
that the names are exactly the same as the filenames you loaded into the Media sec-
tion of the project. Figure 8-12 shows how the blocks for the PictureList should look.

Figure 8-12. The PictureList with image filenames as items



Switching the Image for Each Question  125 

Next, modify the NextButton.Click event handler so that it changes the picture that 
appears depending on the question index. The Image.Picture property is used to 
change the picture displayed. To modify NextButton.Click, you’ll need the blocks 
listed in Table 8-7.

Table 8-7. Blocks to add the image that accompanies the question

Block type Drawer Purpose

set Image1.Picture to Image1 Set this to change the picture.

select list item Lists Select the picture corresponding to the current question.

global PictureList My Definitions Select a filename from this list.

global current 
Question​Index

My Definitions Select the currentQuestionIndexth item.

How the Blocks Work
The currentQuestionIndex serves as the index for both the QuestionList and the 
PictureList. As long as you’ve set up your lists properly such that the first question 
corresponds to the first picture, the second to the second, and so on, the single index 
can serve both lists, as shown in Figure 8-13. For instance, the first picture, roosChurch​
.gif, is a picture of President Franklin Delano Roosevelt (sitting with British Prime 
Minister Winston Churchill), and “Roosevelt” is the answer to the first question.

Figure 8-13. Selecting the currentQuestionIndexth picture each time

Test your app. Click next a few times. Now does a different image 
appear each time you click the NextButton?



126  Chapter 8:  Presidents Quiz

Checking the User’s Answers
Thus far, we’ve created an app that simply cycles through questions and answers 
(paired with an image of the answer). It’s a great example of apps that use lists, but to 
be a true quiz app, it needs to give users feedback on whether they’re right or wrong. 
So now let’s add blocks that report whether the user has answered a question cor-
rectly or not. Our interface is set up so the user enters her answer in AnswerText and 
then clicks the AnswerButton. The app must compare the user’s entry with the answer 
to the current question, using an ifelse block to check. The RightWrongLabel should 
then be modified to report whether or not the answer is correct. There are quite a few 
blocks needed to program this behavior, all of which are listed in Table 8-8.

Table 8-8. Blocks for indicating whether an answer is correct or not

Block type Drawer Purpose

AnswerButton.Click AnswerButton Triggered when the user clicks the AnswerButton.

ifelse Control If the answer is correct, do one thing; otherwise, do another.

text= text Ask if the answer is correct.

AnswerText.Text AnswerText Contains the user’s answer.

select list item Lists Select the current answer from AnswerList.

global AnswerList My Definitions The list to select from.

global currentQuestion​
Index

My Definitions The question (and answer) number the user is on.

set RightWrongLabel​
.Text to

RightWrongLabel Report the answer here.

text ("correct!") Text Display this if the answer is right.

set RightWrongLabel​
.Text to

RightWrongLabel Report the answer here.

text ("incorrect!") Text Display this if the answer is wrong.

How the Blocks Work
As shown in Figure 8-14, the ifelse test asks whether the answer the user entered 
(AnswerText.Text) is equal to the currentQuestionIndexth item in the AnswerList. 
If currentQuestionIndex is 1, the app will compare the user’s answer with the first 
item in AnswerList, “Roosevelt.” If currentQuestionIndex is 2, the app will com-
pare the user’s answer with the second answer in the list, “Carter,” and so on. If the 
test result is positive, the “then-do” blocks are executed and the RightWrongLabel 
is set to “correct!” If the test is false, the “else-do” blocks are executed and the 
RightWrongLabel is set to “incorrect!”



Checking the User’s Answers  127 

Figure 8-14. Checking the answer

Test your app. Try answering one of the questions. It should report 
whether or not you answered the question exactly as specified in the 
AnswerList. Test with both a correct and incorrect answer. You’ll 
likely notice that for an answer to be marked as correct, it has to be 
an exact match (meaning case-specific and including any punctua-
tion or spaces) to what you entered in the AnswerList. Be sure to 
also test that things work on successive questions.

The app should work, but you might notice that 
when you click the NextButton, the “correct!” or 
“incorrect!” text and the previous answer are still 
there, as shown in Figure 8-15, even though you’re 
looking at the next question. It’s fairly innocuous, 
but your app users will definitely notice such user 
interface issues.

To blank out the RightWrongLabel and the 
AnswerText, you’ll put the blocks listed in Table 8-9 
within the NextButton.Click event handler.

Figure 8-15. The first answer and 
“correct!” still appear when user 
moves to the next question.



128  Chapter 8:  Presidents Quiz

Table 8-9. Blocks to clear the RightWrongLabel

Block type Drawer Purpose

set RightWrongLabel​
.Text to

RightWrongLabel This is the label to blank out.

text ("") Text When the user clicks NextButton, erase the previous answer’s 
feedback.

set AnswerText.Text 
to

AnswerText The user’s answer from the previous question.

text ("") Text When the user clicks the NextButton, erase the previous answer.

How the Blocks Work
As shown in Figure 8-16, when the user clicks the NextButton, he is moving on 
to the next question, so the top two rows of the event handler blank out the 
RightWrongLabel and the AnswerText.

Figure 8-16. Blanking out the answer and correct/incorrect label for the next question

Test your app. Answer a question and click “Submit”, then click the 
NextButton. Did your previous answer and its feedback disappear?



The Complete App: The Presidents Quiz  129 

The Complete App: The Presidents Quiz
Figure 8-17 shows the final block configuration for the Presidents Quiz.

Figure 8-17. The blocks for the Presidents Quiz



130  Chapter 8:  Presidents Quiz

Variations
Once you get this quiz working, you might want to explore some variations. For 
example:

•	 Instead of just showing images for each question, try playing a sound clip or a 
short video. With sound, you can turn your quiz into a Name That Tune app.

•	 The quiz is very rigid in terms of what it accepts as a valid answer. There are a 
number of ways to modify this. One is to use the text.contains block to see if 
the user’s answer is contained in the actual answer. Another option is to provide 
multiple answers for each question, and check by iterating (foreach) through 
them to see if any match. You could also figure out how to deal with any extra 
spaces your user entered in the answer or allow upper- or lowercase characters 
(i.e., make the answers case-insensitive).

•	 Transform the quiz so that it is multiple choice. You’ll need an additional list to 
hold the answer choices for each question. The possible answers will be a list of 
lists, with each sublist holding the answer choices for a particular question. Use 
the ListPicker component to allow the user to choose an answer. You can read 
more about lists in Chapter 19.

Summary
Here are some of the ideas we’ve covered in this tutorial:

•	 Separate an app into its data (often stored in a list) and its event handlers. Use 
an ifelse block to check conditions. For more information on conditionals, see 
Chapter 18.

•	 The blocks in event handlers should refer only abstractly to list items and list size 
so that the app will work even if the data in the list is changed.

•	 Index variables track the current position of an item within a list. When you incre-
ment them, be careful about using an if block to handle the app’s behavior when 
the user reaches the end of the list.




