Presidents Quiz

The Presidents Quiz is a trivia game
about former leaders of the United
States. Though this quiz is about
presidents, you can use it as a tem-
plate to build quizzes on any topic.

In the previous chapters, you've been
introduced to some fundamental
programming concepts. Now you're
ready for something more challenging.
You'll find that this chapter requires a
conceptual leap in terms of program-
ming skills and abstract thinking. In
particular, you'll use two list variables to store the data—in this case, the quiz questions
and answers—and you'll use an index variable to track where the user is in the quiz.
When you finish, you'll be armed with the knowledge to create quiz apps and many other
apps that require list processing.

This chapter assumes you're familiar with the basics of App Inventor: using the
Component Designer to build the user interface, and using the Blocks Editor to specify
event handlers and program the component behavior. If you are not familiar with these
fundamentals, be sure to review the previous chapters before continuing.

You'll design the quiz so that the user proceeds from question to question by clicking
a Next button and receives feedback on whether each answer he inputs is correct or
incorrect.

What You’ll Learn

This app, shown in Figure 8-1, covers:
« Defining list variables for storing the questions and answers in lists.

« Sequencing through a list using an index; each time the user clicks Next, you'll
display the next question.

114 Chapter8: Presidents Quiz

+ Using conditional (if) behaviors: performing certain operations only under spe-
cific conditions. You'll use an if block to handle the app’s behavior when the user
reaches the end of the quiz.

« Switching an image to show a different picture for each quiz question.

ich president implemented the '
uring the Great Depression?

submit

|

Next

Figure 8-1. The Presidents Quiz running in the emulator

Getting Started

Connect to the App Inventor website and start a new project. Name it “PresidentsQuiz
and set the screen’s title to “Presidents Quiz”. Open the Blocks Editor and connect

to the phone. Also download the pictures for the quiz from the book’s site (http.//
examples.oreilly.com/0636920016632/) onto your computer: roosChurch.gif, nixon.gif,
carterChina.gif, and atomic.gif. You'll load these images into your project in the next
section.

"

Designing the Components

The Presidents Quiz app has a simple interface for displaying the question and al-
lowing the user to answer. You can build the components from the snapshot of the
Component Designer shown in Figure 8-2.

http://examples.oreilly.com/0636920016632
http://examples.oreilly.com/0636920016632

Designing the Components 115

(] Display Invisible Components in Viewer

Gl & s09pm
U.S. Presidents Quiz

Figure 8-2. The Presidents Quiz in the Designer

Components Properties
& [l screem
. BackgroundColor
i imaget 0 None
*'QuastionLabal
FontBold
& " HorizontalAmangementt O
AnswerText Fontitalic
= AnswerBution o
RightWrongLabel Fontsize
= NextBution 140
FontTypetace
default %
Text
Question...
TextAlignment
(er__
TextColor
B Black
Visible
-]
Width
Automatic...
Height
Rename... | Delete.. Automatic...
Media
m0sChurch gif

carterChina.gif
nixon.gif
atomic.git

To create this interface, first load the images you downloaded into the project. Click
Add in the Media area and select one of the downloaded files (e.g., roosChurch.gif).
Do the same for the other three images. Then add the components listed in Table 8-1.

Table 8-1. Components for the Presidents Quiz app

Component type | Palette group What you'llnameit | Purpose

Image Basic Image1 The picture displayed with the question.

Label Basic QuestionLabel Display the current question.

Horizontal Screen Arrange- Horizontal Organize the AnswerPrompt and Text.
Arrangement ment Arrangement1

TextBox Basic AnswerText The user will enter his answer here.

Button Basic AnswerButton The user clicks this to submit an answer.

Label Basic RightWronglabel | Display “correct!” or“incorrect!”

Button Basic NextButton The user clicks this to proceed to the next question.

Set the properties of the components as follows:

1. Set Imagel.Picture to the image file roosChurch.gif, the first picture that should
appear. Set its Width to “Fill parent”and its Height to 200.

2. SetQuestionlLabel.Text to“Question...” (you'll input the first question in the
Blocks Editor).

3. Set AnswerText.Hint to“Enter an answer”. Set its Text property to blank. Move
itinto HorizontalArrangement1.

116 Chapter8: Presidents Quiz

4. Change AnswerButton.Text to“Submit”and move it into Horizontal
Arrangementi.

5. Change NextButton.Text to “Next”
6. Change RightWronglabel.Text to blank.

Adding Behaviors to the Components

You'll need to program the following behaviors:

« When the app starts, the first question appears, including its corresponding
image.

« When the user clicks the NextButton, the second question appears. When he
clicks it again, the third question appears, and so on.

« When the user reaches the last question and clicks the NextButton, the first
question should appear again.

« When the user answers a question, the app will report whether it is correct or not.

To start, you'll define two list variables based on the items listed in Table 8-2:
Questionlist to hold the list of questions, and AnswerList to hold the list of corre-
sponding answers. Figure 8-3 shows the two lists you'll create in the Blocks Editor.

Table 8-2. Variables for holding question and answer lists

Block type Drawer Purpose
def variable ("QuestionList") | Definitions Store the list of questions (rename it QuestionList).
def variable ("Answerlist") | Definitions Store the list of answers (rename it AnswerList).
make a list Lists Insert the items of the QuestionList.
text (three of them) Text The questions.
make a list Lists Insert the items of the AnswerList.
text (three of them) Text The answers.
gef L can e r:, '“*' \Which president implemented the "New Deal during the Great Depression?
J
e r», = \Which president granted ¢ ist China formal recognition in 19797
QuestionList make a list i r; =
" Which president resigned due to the Watergate scandal?
item r‘J
TEEENNNNNNNNNNN———.|
def C’ call item r: text Roosevelt
item r; text Carter
AnswerList make a list
item r; text Nixon
item
)

Figure 8-3. The lists for the quiz

Adding Behaviors to the Components 117

Defining the Index Variable

The app needs to keep track of the current question as the user clicks the NextButton
to proceed through the quiz. You'll define a variable named currentQuestionIndex
for this, and the variable will serve as the index into both the QuestionList and
AnswerlList. Table 8-3 lists the blocks you'll need to do this, and Figure 8-4 shows
what that variable will look like.

Table 8-3. Creating the index

Block type Drawer Purpose
def variable ("currentQuestionindex”) | Definitions Hold the index (position) of the current question/answer.
number (1) Math Set the initial value of currentQuestionIndexto 1 (the
first question).
def {“J number |
currentQuestionindex 1 1

Figure 8-4. Initiating the index blocks with a value of 1

Displaying the First Question

Now that you've defined the variables you need, you can specify the app’s interactive
behavior. As with any app, it's important to work incrementally and define one be-
havior at a time. To start, let’s think only about the questions—specifically, displaying
the first question in the list when the app launches. We'll come back and deal with
the images a bit later.

You want your code blocks to work regardless of the specific questions that are in the
list. That way, if you decide to change the questions or create a new quiz by copying
and modifying this app, you'll only need to change the actual questions in the list
definitions, and you won't need to change any event handlers.

So, for this first behavior, you don’t want to refer directly to the first question, “Which
president implemented the ‘New Deal’ during the Great Depression?” Instead, you
want to refer, abstractly, to the first slot in the QuestionList (regardless of the
specific question there). That way, the blocks will still work even if you modify the
question in that first slot.

You select particular items in a list with the select list item block. The block asks you
to specify the list and an index (a position in the list). If a list has three items, you can
enter 1, 2, or 3 as the index.

For this first behavior, when the app launches, you want to select the first item in
Questionlist and place it in the QuestionlLabel. As you'll recall from the “Android,
Where's My Car?” app in Chapter 7, if you want something to happen when your app
launches, you program that behavior in the Screen1.Initialize event handler using
the blocks listed in Table 8-4.

118 Chapter8: Presidents Quiz

Table 8-4. Blocks to load the initial question when the app starts

Block type Drawer Purpose

Screen1.Initialize | Screenl Event handler triggered when the app begins.
set QuestionLabel | QuestionLabel Put the first question in QuestionLabel.
.Text to

select list item Lists Select the first question from QuestionlList.
Global QuestionList | My Definitions The list to select questions from.

number (1) Math Select the first question by using an index of 1.

How the blocks work

The Screen1.Initialize event is triggered when the app begins. As shown in
Figure 8-5, the first item of the variable QuestionlList is selected and placed into
QuestionlLabel.Text. So, when the app begins, the user will see the first question.

when Screent Initialize |
do
B : :
=8 to C' call list r:: gkobal QuestionList ‘

QuestionLabel.Text select st HOm ey () number ‘

.

Figure 8-5. Selecting the first question

Test your app. Plug in your phone to the computer or click “New
emulator” to open an Android emulator, and then click "Connect

to Device.” When your app loads, do you see the first item of
Questionlist, “Which president implemented the ‘New Deal’ during
the Great Depression?”

Iterating Through the Questions

Now program the behavior of the NextButton. You've already defined the current
QuestionIndex to remember which question the user is on. When the user clicks the
NextButton, the app needs to increment (add one to) the currentQuestionIndex (i.e.,
change it from 1 to 2 or from 2 to 3, and so on). You'll then use the resulting value of
currentQuestionIndex to select the new question to display.

As a challenge, see if you can build these blocks on your own. When you're finished,
compare your results against Figure 8-6.

Adding Behaviors to the Components 119

when NextButton.Click | Increment the index. ()

do
sat global to rf r.q

currentQuestionindex [kel

|

currentQuestionindex | + r:| number ‘ ‘

4
sat r’ ! : i _
o[= H list r,l ghbal o o ctionList ‘

QuestionLabel.Text select list item | . = r':' global

currentQuestionindex ‘

——

Salect the ‘currentQuestionindexth’ ||
questicnand place it in the QuestionLabel. | |

Figure 8-6. Moving to the next question

How the blocks work

The first row of blocks increments the variable currentQuestionIndex. If current
QuestionIndex hasa 1init, itis changed to 2. If it has a 2, it is changed to 3, and so
on. Once the currentQuestionIndex variable has been changed, the app uses it to
select the new question to display.

When the user clicks NextButton for the first time, the increment blocks will change
currentQuestionIndex from 1 to 2, so the app will select the second item from
QuestionLlist, “Which president granted communist China formal recognition in
1979?" The second time NextButton is clicked, currentQuestionIndex will be set
from 2 to 3, and the app will select the third question in the list, “Which president
resigned due to the Watergate scandal?”

Note. Take a minute to compare the blocks of NextButton.Click to

\:14-_(;/ those in the Screen.Initialize event handler. In the Screen.Initialize
-/ blocks, the app used select list item with a concrete number (1)

to select the list item. In these blocks, you're selecting the list item
using a variable as the index. The app doesn’t choose the first item
in the list, or the second or third; it chooses the currentQuestion
Indexth item, and thus a different item will be selected each time
the NextButton is clicked. This is a very common use for an index—
incrementing its value to find and display items in a list.

The problem with the app is that it simply increments to the next question each time
without any concern for the end of the quiz. When currentQuestionIndex is already
3 and the user clicks the NextButton, the app changes currentQuestionIndex from
3 to 4. It then calls select list item to get the currentQuestionIndexth item—in this

120 Chapter8: Presidents Quiz

case, the fourth item. Since there are only three items in the variable QuestionlList,
the Android device doesn’t know what to do and forces the app to quit. So how can
we let the app know that it has reached the end of the quiz?

Test your app. Test the behavior of the NextButton to see if the app
is working correctly. Click the NextButton on the phone. Does the
phone display the second question, “Which president granted com-
munist China formal recognition in 1979?" It should, and the third
question should appear when you click the NextButton again. But
ifyou click again, you should see an error: “Attempting to get item

4 of a list of length 3.” The app has a bug! Do you know what the
problem is? Try figuring it out before moving on.

The app needs to ask a question when the NextButton is clicked, and execute differ-
ent blocks depending on the answer. Since you know your app contains three ques-

tions, one way to ask the question would be, “Is the variable currentQuestionIndex
greater than 3?”If the answer is yes, you should set currentQuestionIndex back to 1
so the user is taken back to the first question. The blocks you'll need for this are listed
in Table 8-5.

Table 8-5. Blocks for checking the index value for the end of the list

Block type Drawer Purpose

if Control Figure out if the user is on the last question.

= Math Testif currentQuestionIndexis3.

global currentQuestion | My Definitions | Put this into the left side of =.

Index

number 3 Math Put this into the right side of = since 3 is the number of items in the list.
set global current My Definitions | Set to 1to revert to the first question.

Questionindex to

number 1 Math Set the index to 1.

Adding Behaviors to the Components 121

Test your app. Because variables like currentQuestionIndex
aren't visible when you run an app, they are often the source of bugs
in a program. Fortunately, App Inventor provides a way to “watch”
variables during testing. Specifically, you can right-click a def
variable block and select Watch, and a little box will appear, show-
ing the value of the variable. In this case, right-click the def current
QuestionIndex definition to watch it. Then click on the “Connect to
Device...” button in the Blocks Editor to restart the app. The def current
Questionindex block will appear with a watch box displaying the
initial value of currentQuestionIndex (1), as shown in Figure 8-8.

def [|

b
currentQues tionindex C: bt

Figure 8-8. Watching a variable while testing your app

Now pick up the phone and click the NextButton. The second ques-
tion, “Which president granted communist China formal recognition
in 1979?” should appear in the QuestionlLabel on the phone, as
before. On the App Inventor screen, a 2 should appear in the current
QuestionIndex watch box, as shown in Figure 8-9.

whan NextButton.Click |

do set global to C'[_: TG rJ =
currentQuestionindex l_] 29040 eurrentQuestionindex | + by Cibe |
if test rJ J
’|rj, 9903l ¢ urrentQuestionindex | = [—q AL |
then-do
sat global to b
F currentQuestionindex CII]
Lo
—)
- - Cl e = r: e QuestionList
QuestionLabel.Text select list item)
index 1. 99831 ¢ rrentQuestionindex
==

Figure 8-9. Confirming that the index is incrementing

When you click again, the third question should appear on the
phone and a 3 should appear in the watch box. Now for the be-
havior you're really testing: if you click again, you should see 1 in
currentQuestionIndex, and the first question (“Which president
implemented the ‘New Deal’ during the Great Depression?”) should
appear on the phone.

122 Chapter8: Presidents Quiz

When the user clicks the NextButton, the app increments the index as it did before.
But then, as shown in Figure 8-7, it checks to see if currentQuestionIndexis larger
than 3, the number of questions. If it is larger than 3, currentQuestionIndex is set

back to 1, and the first question is displayed. If it is 3 or less, the blocks within the if
block are not performed, and the current question is displayed as usual.

when NextButton.Click

do

sat global to crj C
currentQuestionindex 1 2°°' currentQuestionindex | - fiamer 1v|
[— rj = If the index has passed 3, |"‘|
if test 7 revert back to the 1st question.
~
|ﬂ: 993l ¢ yrrentQuestionindex | = [:] ||
then-do
sat global
g ETEnte F—— to C: number 1 |
e J
—
sat to C’ cal @ tist [gobat e honiiet
QuestionLabel.Text select listitem z
index | dlbal ¢y rrentQuestionindex
D_\.r

Figure 8-7. Checking if the last (third) question has been reached

Making the Quiz Easy to Modify

If your blocks for the NextButton work, pat yourself on the back—you are on your
way to becoming a programmer! But what if you added a new question (and answer)
to the quiz? Would your blocks still work?

To explore this, first add a fourth question to QuestionlList and a fourth answer into
Answerlist, as shown in Figure 8-10.

et r' o= Lo r: ' \Which president implemented the "New Deal’ during the Great Depression? I

""‘c““‘ Which president d ist China formal recognition in 19797 |

QuestionList make a list "™ C.“ ** \Which president resigned due to the Watergate scandal?

itern rj text
|

itern rJ

—

daf c cal item r: taxt R evelt
item | text

Which president was in office when two atom bombs were dropped in Japan?

Carter

AnswerList make alist =™ lo = Njon

itemn [tet
item

—

Figure 8-10. Adding an item to both lists

Making the Quiz Easy to Modify 123

Test your app. Click the NextButton several times. You'll notice that
the fourth question never appears, no matter how many times you
click Next.

Do you know what the problem is? Before reading on, see if you can
fix the blocks so the fourth question appears.

The problem is that the test to determine whether the user is on the last question is

too specific; it asks if the currentQuestionIndex variable is 3. You could just change
the number 3 to a 4, and the app would work correctly again. The problem with that
solution, however, is that each time you modify the questions and answers, you also
have to remember to make this change. Such dependencies in a computer program
often lead to bugs, especially as an app grows in complexity.

A much better strategy is to design the blocks so that they will work no matter how
many questions there are. Such generality makes it easier if you, as a programmer,
want to customize your quiz for some other topic. It is also essential if the list you are
working with changes dynamically—for example, think of a quiz app that allows the
user to add new questions (you'll build this in Chapter 10).

For a program to be more general, it can’t refer to concrete numbers like 3, as that
only works for quizzes of three questions. So, instead of asking if the value of
currentQuestionIndex is larger than the specific number 3, ask if it is as large as the
number of items in QuestionList. If the app asks this more general question, it will
work even when you add to or remove items from the QuestionlList. So modify the
NextButton.Click event handler to replace the previous test that referred directly to
3.You'll need the blocks listed in Table 8-6.

Table 8-6. Blocks to check the length of the list

Block type Drawer Purpose
length of list Lists Ask how many items are in QuestionList.
global Question | My Definitions Put this into the “list”slot of length of list.
List

How the Blocks Work

The if test now compares the currentQuestionIndex to the length of the
Questionlist, as shown in Figure 8-11. So, if currentQuestionIndex is 5, and the
length of the Questionlist is 4, then the currentQuestionIndex will be set back
to 1. Note that, because the blocks no longer refer to 3 or any specific number, the
behavior will work no matter how many items are in the list.

124 (Chapter8: Presidents Quiz

when NextButton.Click

do

sat global

B
currentQuestionindex 'Irfj, 9203l ¢\ rrentQuestionindex | s C, number 1V| ‘
e

if test [r .
- 5 can ~ ist [giobal — |
||r'dl 992! currentQuestionindex | > | lengthoflist 7 Susstey
hando N global o S to f‘: number o If the index is larger than length of tncl""l
curl X [list, revert back to the 1st question. | _.
—r J

o meeed

T to {:' cal list f: glebal o estionList
QuestionLabel. Text select listitem . " global
I

currentQuestionindex

D)

Figure 8-11. Checking for the end of the list in a generic way

Test your app. When you click the NextButton, does the app now
cycle through the four questions, moving to the first one after the
fourth?

Switching the Image for Each Question

Now that you've programmed all the behaviors for moving through the questions
(and you've made your code smarter and more flexible by making it more abstract),
let’s get the images working properly, too. Right now, the app shows the same image
no matter what question is being asked. You can change this so an image pertaining
to each question appears when the user clicks the NextButton. Earlier, you added
four pictures as media for the project. Now, you'll create a third list, Picturelist,
with the image filenames as its items. You'll also modify the NextButton.Click event
handler to switch the picture each time, just as you switch the question text each
time. (If you're already thinking about using the currentQuestionIndex here, you're
on the right track!)

First, create a Picturelist and initialize it with the names of the image files. Be sure
that the names are exactly the same as the filenames you loaded into the Media sec-
tion of the project. Figure 8-12 shows how the blocks for the Picturelist should look.

def f: call S I': ¥ roosChurch.gifv

[-

itern teot

" carterChina.gif

PictureList make alist =™ '» = pixon gif
item text atomic.glf

[-

-

itern r
|

Figure 8-12. The PictureList with image filenames as items

Switching the Image for Each Question 125

Next, modify the NextButton.Click event handler so that it changes the picture that
appears depending on the question index. The Image.Picture property is used to
change the picture displayed. To modify NextButton.Click, you'll need the blocks
listed in Table 8-7.

Table 8-7. Blocks to add the image that accompanies the question

Block type Drawer Purpose

set Image1.Picture to | Imagel Set this to change the picture.

select list item Lists Select the picture corresponding to the current question.
global PicturelList My Definitions | Select a filename from this list.

global current My Definitions | Select the currentQuestionIndexth item.
Questionindex

How the Blocks Work

The currentQuestionIndex serves as the index for both the QuestionList and the
Picturelist. Aslong as you've set up your lists properly such that the first question
corresponds to the first picture, the second to the second, and so on, the single index
can serve both lists, as shown in Figure 8-13. For instance, the first picture, roosChurch
.gif, is a picture of President Franklin Delano Roosevelt (sitting with British Prime
Minister Winston Churchill), and “Roosevelt” is the answer to the first question.

when NextButton.Click

do ?
i o cﬁ global c numbear
currentQuestionindex | i currentQuestionindex | * | 1
[S
if test J = r4 ‘
o N call - list ghobal |
|r': 9903l g urrentQuestionindex | i ['1 length of list . QuestionList
then-do
sat global oy . to C numbear 1 |
1
—— .
e —"

sat to C' call st [gioval QuestionList
QuestionLabel.Text selectlistitem . 0o |
~ currentQuestionindex

— The same index is used to M
sat to C' call list f: global PictureList | select both a pic and a qucstion.| |

Image1.Picture select list item
% index L siobal B ¢ rrentquestionindex |

= e —

Figure 8-13. Selecting the currentQuestionIndexth picture each time

Test your app. Click next a few times. Now does a different image
appear each time you click the NextButton?

126 Chapter8: Presidents Quiz

Checking the User’s Answers

Thus far, we've created an app that simply cycles through questions and answers
(paired with an image of the answer). It's a great example of apps that use lists, but to
be a true quiz app, it needs to give users feedback on whether they're right or wrong.
So now let’s add blocks that report whether the user has answered a question cor-
rectly or not. Our interface is set up so the user enters her answer in AnswerText and
then clicks the AnswerButton. The app must compare the user’s entry with the answer
to the current question, using an ifelse block to check. The RightWrongLabel should
then be modified to report whether or not the answer is correct. There are quite a few
blocks needed to program this behavior, all of which are listed in Table 8-8.

Table 8-8. Blocks for indicating whether an answer is correct or not

Block type Drawer Purpose
AnswerButton.Click AnswerButton Triggered when the user clicks the AnswerButton.
ifelse Control If the answer is correct, do one thing; otherwise, do another.
text= text Ask if the answer is correct.
AnswerText.Text AnswerText Contains the user’s answer.
select list item Lists Select the current answer from AnswerList.
global AnswerList My Definitions The list to select from.
global currentQuestion | My Definitions The question (and answer) number the user is on.
Index
set RightWrongLabel RightWrongLabel Report the answer here.
.Text to
text ("correct!") Text Display this if the answer is right.
set RightWrongLabel | RightWronglLabel Report the answer here.
.Text to
text ("incorrect!") Text Display this if the answer is wrong.
How the Blocks Work

As shown in Figure 8-14, the ifelse test asks whether the answer the user entered
(AnswerText.Text) is equal to the currentQuestionIndexth item in the AnswerlList.
If currentQuestionIndex is 1, the app will compare the user’s answer with the first
item in AnswerlList, “Roosevelt.” If currentQuestionIndex is 2, the app will com-
pare the user’s answer with the second answer in the list, “Carter,” and so on. If the
test result is positive, the “then-do” blocks are executed and the RightWronglLabel

is set to “correct!” If the test is false, the “else-do” blocks are executed and the
RightWronglabel is set to “incorrect!”

Checking the User’s Answers 127

Compare the user's answer in
when AnswerButton.Click |

do

AnswerText with the current answer. |

answer is the same as that of

|"\ The position (index) of each ‘
each gquestion. L)

—r
ifelse test [J

call

Answe rText.Text ‘

selectlistitem | r: agiobat
1

list CI global 1 nswerList |

currentQuestionindex

then-do F
RightWrongLabel. Text cl correct! |
——
else-do F
RightWrongLabel.Text q incorrect! |
|—|__,;L

Figure 8-14. Checking the answer

Test your app. Try answering one of the questions. It should report
whether or not you answered the question exactly as specified in the
AnswerList. Test with both a correct and incorrect answer. You'll

likely notice that for an answer to be marked as correct, it has to be
an exact match (meaning case-specific and including any punctua-
tion or spaces) to what you entered in the AnswerlList. Be sure to
also test that things work on successive questions.

The app should work, but you might notice that
when you click the NextButton, the “correct!” or
“incorrect!” text and the previous answer are still
there, as shown in Figure 8-15, even though you're
looking at the next question. It’s fairly innocuous,
but your app users will definitely notice such user

interface issues.

To blank out the RightWronglabel and the
AnswerText, you'll put the blocks listed in Table 8-9
within the NextButton.Click event handler.

e e r—
R ® 12:05m

.S Presidents Quiz

ehich esldent granted communist Chlna
fformal recognition in 19797

I Roosevelt Submit

jorrect!

Next

Figure 8-15. The first answer and
‘correct!” still appear when user
moves to the next question.

128 Chapter8: Presidents Quiz

Table 8-9. Blocks to clear the Right WrongLabel

Block type Drawer Purpose

set RightWrongLabel | RightWrongLabel This is the label to blank out.

.Text to

text (") Text When the user clicks NextButton, erase the previous answer’s
feedback.

set AnswerText.Text AnswerText The user’s answer from the previous question.

to

text (") Text When the user clicks the NextButton, erase the previous answer.

How the Blocks Work

As shown in Figure 8-16, when the user clicks the NextButton, he is moving on
to the next question, so the top two rows of the event handler blank out the

RightWronglabel and the AnswerText.

when NextButton.Click Blank out the AnswerText a
and RightWrongLabel.
. -
set to [text
AnswerText Text ;
—r
sat to text

RightWrongLabel.Text

_——
sat global [H o o -
currentQuestionindex + " currentQuestionindex | + T ¢

I
if test H J :
| & [:_i call length o list list (‘:I glabal o ctionList | |

]r'j @8al currentQuestionindex

Sane sat global to b
currentQuestionindex cl TTE |

—

ey
set to C‘ a1 H tist [giobal QuestionList

QuestionLabel.Text select list item .
index ‘ gkbal ¢\ irrentQuestionindex

o
sat to c call list f: ghobal PictureList

select list item T

Image 1.Picture ?
o - 9031 Bl ¢ yrrentQuestionindex |

O

——

i

Figure

8-16. Blanking out the answer and correct/incorrect label for the next question

Test your app. Answer a question and click “Submit’] then click the
NextButton. Did your previous answer and its feedback disappear?

129

The Complete App: The Presidents Quiz

1Z

The Presidents Qu
Figure 8-17 shows the final block configuration for the Presidents Quiz.

The Complete App

F T
1srjuonseng 1 1s1] jo yibuaj | - X@pujuoRsanIBLIND o
1eqob _u s [i23 U] 7 — m_
t.., 151 8L1 Ol Y2Bq Liana. ‘Isi| au) T =
Jo ybual ueyr sabaey s| xapu) a1)i _ I o u * _ Xepujuoisenpiuaund S XapujuoisanpiuaLInND
o A et s

j19e1100u]
L K

J0 1YL SB BWEes ay! s| Jamsue

yoea jo (xapu)) uopsod syl

(“ucpsenb yoea
| .

_ Xopu|uojISaNDIUALIND

“uopsanb e pue

g _ 1sI124mald
i _ 2d B L10q 109/5 O1 PASN S| XBPU| JWES BY L

eqolb U s

{
B s) xepu1 ey 18y 308]88 aumaig’|ebew)
e) o s

l
——b

——

_ XBpU|UOIISaNDIUALIND

SIquonsan -
THICIE g

f
12908 7 xopul gy 351) 300j0s xeLjeqejuonseny
B o s

——

) 81 vl)l 8oeid pueuonsanb
t JIXepujuopsanpiuaung, ayl 12ejes

3 XapujuonsanpIUBLIND
squw) o 09008155 | 0 o

T ") "¥epuj su1jusweDu|

m|\/| U
a1 jaqe1buc.mbry
198

x “1aqe16udiAuBlY pue
e Liamsuy’ eyl 1IN0 yuelg

op-2s]

_ _b 1xap1aqetbuoimiubry
wey) o3 s

JX8]"IXa] 18MSUY

war) oy s
HADUCHNGIXEN Ui

1xay'j8qe1BuoNIUBLY

XopujuolsanpIuaLINg
- _ rﬁssrU @pujuonsanpIL

op-uayy

S

X3pujuoissnpiuaund
A im0 u XIPUL wiay sy joe)es =

SIamsu L
_ i ¥ eco 2 s

T ADMSUEB UBLIND BY] LM 1X8 LIaMSUY
_ Ul JamsUE 5Jasn 8yl aledwoD

6 21wole

JBuoxiu

H6°eulyD.enea

JB6ysinyysood

1Xa] 1xallamsuy L,

YEPUL wiay 3sy Jasjas

1eqoi6 D wsi

isnuonsang
159 as|a)l

op
_ HAIJUOPNGIaMSUY yaym

| way
uewind
_ L o1 7) won

UOXIN _

Py xe) | wey

351| & 9ew 1sreimalg
pa \ wey

J|aAaS00Y _

el @) o ey

L2l L way| e

L wayy

_ gueder uj paddolp a1am SqUWOQ WO)E OM] UBUM 391130 Ul Sem Juapisead Yalum _

1
xa) U wayy
7 <Llepueds ajebialep) ayy o) anp paubiise. juspisesd yamm v.U -
X wayy

_ 6261 Ul UoRIUBO391 W10} BUID ISIUNUILIOD ey Juoplseid yamm _ U il

g tuorssaidaq 2.9 ay) Buunp jeag MaN, 8y} pajuawaidu) Juspisaid yanyn - U

weyy

e

Xey'|ageuonsanp

_Sbs 195

op
AZIRRIUL JUBBIDS usym

isramsuy

15| B 8)EW

e) i

11| B @)RW isrjuonseng

Figure 8-17. The blocks for the Presidents Quiz

130 Chapter8: Presidents Quiz

Variations

Once you get this quiz working, you might want to explore some variations. For
example:

Instead of just showing images for each question, try playing a sound clip or a
short video. With sound, you can turn your quiz into a Name That Tune app.

The quiz is very rigid in terms of what it accepts as a valid answer. There are a
number of ways to modify this. One is to use the text.contains block to see if
the user’s answer is contained in the actual answer. Another option is to provide
multiple answers for each question, and check by iterating (foreach) through
them to see if any match. You could also figure out how to deal with any extra
spaces your user entered in the answer or allow upper- or lowercase characters
(i.e., make the answers case-insensitive).

Transform the quiz so that it is multiple choice. You'll need an additional list to
hold the answer choices for each question. The possible answers will be a list of
lists, with each sublist holding the answer choices for a particular question. Use
the ListPicker component to allow the user to choose an answer. You can read
more about lists in Chapter 19.

Summary

Here are some of the ideas we've covered in this tutorial:

Separate an app into its data (often stored in a list) and its event handlers. Use
an ifelse block to check conditions. For more information on conditionals, see
Chapter 18.

The blocks in event handlers should refer only abstractly to list items and list size
so that the app will work even if the data in the list is changed.

Index variables track the current position of an item within a list. When you incre-
ment them, be careful about using an if block to handle the app’s behavior when
the user reaches the end of the list.

