
CHAPTER 2

PaintPot

This tutorial introduces the Canvas component 
for creating simple, two-dimensional (2D) 
graphics. You’ll build PaintPot, an app that lets 
the user draw on the screen in different colors, 
and then update it to allow him to take his own 
picture and draw on that instead. On a 
historical note, PaintPot was one of the first 
programs developed to demonstrate the 
potential of personal computers, as far back as 
the 1970s. Back then, making something like 
this simple drawing app was a very complex 
undertaking, and the results were pretty 
unpolished. But now with App Inventor, anyone 
can quickly put together a fairly cool drawing 
app, which is a great starting point for building 
2D games.

With the PaintPot app shown in Figure 2-1, you can:

• Dip your finger into a virtual paint pot to draw in 
that color.

• Drag your finger along the screen to draw a line.

• Poke the screen to make dots.

• Use the button at the bottom to wipe the screen 
clean.

• Change the dot size to large or small with the 
buttons at the bottom.

• Take a picture with the camera and then draw on 
that picture.

Figure 2-1. The PaintPot app



20  Chapter 2:  PaintPot

What You’ll Learn
This tutorial introduces the following concepts:

• Using the Canvas component for drawing.

• Handling touch and drag events on the phone’s surface.

• Controlling screen layout with arrangement components.

• Using event handlers that take arguments.

• Defining variables to remember things like the dot size the user has chosen for 
drawing.

Getting Started
Make sure your computer and your phone are set up to use App Inventor, and 
browse to the App Inventor website at http://appinventor.googlelabs.com. Start a 
new project in the Component Designer window and name it “PaintPot”. Open the 
Blocks Editor, click “Connect to Device,” and make sure the phone has started the App 
Inventor app.

To get started, go to the Properties panel on the right of the Designer and change 
the screen title to “PaintPot” (no more Screen1 here!). You should see this change on 
the phone, with the new title displayed in the title bar of your app.

If you’re concerned about confusing your project name and the screen name, don’t 
worry! There are three key names in App Inventor:

• The name you choose for your project as you work on it. This will also be the 
name of the application when you package it for the phone. Note that you can 
click Save As in the Component Designer to start a new version or rename a 
project.

• The component name Screen1, which you’ll see in the panel that lists the applica-
tion’s components. You can’t change this name in the current version of App 
Inventor.

• The title of the screen, which is what you’ll see in the phone’s title bar. This starts 
out being Screen1, which is what you used in HelloPurr. But you can change it, as 
we just did for PaintPot.

Designing the Components
You’ll use these components to make the app:

• Three Button components for selecting red, blue, or green paint, and a 
HorizontalArrangement component for organizing them. 



Designing the Components  21 

• One Button component for wiping the drawing clean, and two for changing the 
size of the dots that are drawn.

• A Canvas component, which is the drawing surface. Canvas has a 
BackgroundImage property, which we’ll set to the kitty.png file from the 
HelloPurr tutorial in Chapter 1. Later in this chapter, you’ll modify the app so the 
background can be set to a picture the user takes.

Creating the Color Buttons
First, create the three color buttons using the following instructions:

1. Drag a Button component onto the viewer and change its Text attribute to 
“Red” and make its BackgroundColor red.

2. Click Button1 in the components list in the Viewer to highlight it (it might 
already be highlighted) and click Rename to change its name from Button1 to 
RedButton. Note that spaces aren’t allowed in component names, so it’s com-
mon to capitalize the first letter of each word in the name.

3. Similarly, make two more buttons for blue and green, named BlueButton and 
GreenButton, placing them under the red button vertically. Check your work up 
to this point against Figure 2-2.

Figure 2-2. The Viewer showing the three buttons created

Note that in this project, you’re changing the names of the components rather than 
leaving them as the default names as you did with HelloPurr. Using more meaning-
ful names makes your projects more readable, and it will really help when you move 
to the Blocks Editor and must refer to the components by name. In this book, we’ll 
use the convention of having the component name end with its type (for example, 
RedButton).

Test your app. If you haven’t clicked “Connect to Device,” do so now 
and check how your app looks on either your phone (if it’s plugged 
in) or in the emulator.



22  Chapter 2:  PaintPot

Using Arrangements for Better Layouts 
You should now have three buttons stacked on top of one another. But for this app, 
you want them all lined up next to one another at the top of the screen, as shown in 
Figure 2-3. You do this using a HorizontalArrangement component:

1. From the Palette’s Screen Arrangement category, drag out a 
HorizontalArrangement component and place it under the buttons. 

2. In the Properties panel, change the Width of the HorizontalArrangement to “Fill 
parent” so that it fills the entire width of the screen.

3. Move the three buttons one by one into the HorizontalArrangement component. 
Hint: You’ll see a blue vertical line that shows where the piece you’re dragging 
will go.

Figure 2-3. The three buttons within a horizontal arrangement

If you look in the list of project components, you’ll see the three buttons indented 
under the HorizontalArrangement component to show that they are now its sub-
components. Notice that all the components are indented under Screen1.

Test your app. You should also see your three buttons lined up 
in a row on the phone screen, although things might not look 
exactly as they do on the Designer. For example, the outline around 
HorizontalArrangement appears in the Viewer but not on the 
phone.

In general, you use screen arrangements to create simple vertical, horizontal, or tabu-
lar layouts. You can also create more complex layouts by inserting (or nesting) screen 
arrangement components within each other.

Adding the Canvas
The canvas is where the user will draw circles and lines. Add it, and add the kitty.png 
file from HelloPurr as the BackgroundImage:



Designing the Components  23 

1. From the Palette’s Basic category, drag a Canvas component onto the Viewer. 
Change its name to DrawingCanvas. Set its Width to “Fill parent.” Set its Height 
to 300 pixels. 

2. If you’ve completed the HelloPurr tutorial (Chapter 1), you have already down-
loaded the kitty.png file. If you haven’t, you can download it from http://examples 
.oreilly.com/0636920016632/.

3. Set the BackgroundImage of the Canvas to the kitty.png file. In the Property 
editor, the BackgroundImage will be set to None. Click the field and choose Add 
to upload the kitty.png file.

4. Set the PaintColor of the Canvas to red so that when the user starts the app but 
hasn’t clicked on a button yet, his drawings will be red. Check to see that what 
you’ve built looks like Figure 2-4.

Figure 2-4. The Canvas component has a BackgroundImage of the kitty picture

Arranging the Bottom Buttons and the Camera Component
1. From the Palette, drag out a second HorizontalArrangement and place it under 

the canvas. Then drag two more Button components onto the screen and place 
them in this bottom HorizontalArrangement. Change the name of the first but-
ton to TakePictureButton and its Text property to “Take Picture”. Change the 
name of the second button to WipeButton and its Text property to “Wipe”. 

2. Drag two more Button components from the Palette into the Horizontal 
Arrangement, placing them next to WipeButton.

http://examples.oreilly.com/0636920016632/
http://examples.oreilly.com/0636920016632/


24  Chapter 2:  PaintPot

3. Name the buttons BigButton and SmallButton, and set their Text to “Big Dots” 
and “Small Dots”, respectively.

4. From the Media Palette, drag a Camera component into the Viewer. It will appear 
in the non-visible component area.

You’ve now completed the steps to set the appearance of your app as shown in 
Figure 2-5. 

Figure 2-5. The complete user interface for PaintPot

Test your app. Check the app on the phone. Does the kitty picture 
now appear under the top row of buttons? Does the bottom row of 
buttons appear? 

Adding Behaviors to the Components
The next step is to define how the components behave. Creating a painting program 
might seem overwhelming, but rest assured that App Inventor has done a lot of the 
heavy lifting for you: there are easy-to-use blocks for handling the user’s touches and 
drags, and for drawing and taking pictures.



Adding Behaviors to the Components  25 

In the Designer, you added a Canvas component named DrawingCanvas. Like 
all canvas components, DrawingCanvas has a Touched event and a Dragged 
event. You’ll program the DrawingCanvas.Touched event so that it calls 
DrawingCanvas.DrawCircle. You’ll program the DrawingCanvas.Dragged event 
to call DrawingCanvas.DrawLine. You’ll then program the buttons to set the 
DrawingCanvas.PaintColor property, clear the DrawingCanvas, and change the 
BackgroundImage to a picture taken with the camera.

Adding the Touch Event to Draw a Dot
First, you’ll arrange things so that when you touch the DrawingCanvas, you draw a 
dot at the spot you touch: 

1. In the Blocks Editor, click My Blocks, select the drawer for the DrawingCanvas, 
and drag the DrawingCanvas.Touched block to the workspace. As soon as you 
drag the block out, the three plugs on the right automatically fill in with name 
blocks for x, y, and touchedSprite, as shown in Figure 2-6.

Figure 2-6. The event comes with information about where the screen is touched

Note. If you’ve completed the HelloPurr app in Chapter 1, you’re 
familiar with Button.Click events, but not with Canvas events. 
Button.Click events are fairly simple because there’s nothing to 
know about the event other than that it happened. Some event 
handlers, however, come with information about the event called 
arguments. The DrawingCanvas.Touched event tells you the x and 
y coordinates of the touch within the canvas. It also tells you if an 
object within the DrawingCanvas (in App Inventor, this is called a 
sprite) was touched, but we won’t need that until Chapter 3. The x 
and y coordinates are the arguments we’ll use to note where the user 
touched the screen, so we can then draw the dot at that position.

2. Drag out a DrawingCanvas.DrawCircle command from the DrawingCanvas 
drawer and place it within the DrawingCanvas.Touched event handler, as 
shown in Figure 2-7.



26  Chapter 2:  PaintPot

Figure 2-7. When the user touches the canvas, the app draws a circle

On the right side of the DrawingCanvas.DrawCircle block, you’ll see three slots 
for the arguments we need to fill in: x, y, and r. The x and y arguments specify 
the location where the circle should be drawn, and r determines the radius (or 
size) of the circle. The yellow warning box with the exclamation point at the top 
of the DrawingCanvas.Touched event handler denotes that these slots haven’t 
yet been filled. We’ll build the blocks to do that next.

This event handler can be a bit confusing because the DrawingCanvas 
.Touched event also has x and y slots; just keep in mind that the x and y for the 
DrawingCanvas.Touched event tell you where the user touched, while the x 
and y for the DrawingCanvas.DrawCircle event are open slots for you to specify 
where the circle should be drawn. 

Because you want to draw the circle where the user touched, plug in the x and y 
values from DrawingCanvas.Touched as the values of the x and y parameters in 
DrawingCanvas.DrawCircle. 

Note. Do not grab the arguments of the Touched event directly, 
even though this might seem logical! The fact that the arguments can 
even be grabbed is an unfortunate design aspect of App Inventor. 
Instead, you want to grab these values from the My Definitions 
drawer, as shown in Figure 2-8.

Figure 2-8. The system has added references to the event arguments touchedSprite, y, and x



Adding Behaviors to the Components  27 

3. Open the My Definitions drawer within My Blocks and find the blocks for value x 
and value y.

The blocks were automatically created for you by App Inventor when you dragged 
out the DrawingCanvas.Touched event handler block: they are references to 
the x and y arguments (or names) of that event. Drag out the value x and value 
y blocks and plug them into the corresponding sockets in the DrawingCanvas 
.DrawCircle block so they resemble what is shown in Figure 2-9.

Figure 2-9. The app knows where to draw (x,y), but we still need to specify how big the circle should be

4. You’ll also need to specify the radius, r, of the circle to draw. The radius is measured 
in pixels, which is the tiniest dot that can be drawn on the screen. For now, set it to 
5: click in a blank area of the screen to bring up the shortcut menu, and then select 
the Math folder. Select 123 from the drop-down list to create a number block. 
Change the 123 to 5 and plug that in for the r slot. When you do, the yellow box 
in the top-left corner will disappear as all the slots are filled. Figure 2-10 illustrates 
how the final DrawingCanvas.Touched event handler should look.

Note. Note that you could have created the number 5 block by 
simply typing a 5 in the Blocks Editor, followed by Return. This is an 
example of typeblocking: if you start typing, the Blocks Editor shows 
a list of blocks whose names match what you are typing; if you type 
a number, it creates a number block.



28  Chapter 2:  PaintPot

Figure 2-10. When the user touches the canvas, a circle of radius 5 will be drawn at (x,y)

Test your app. Try out what you have so far on the phone. Touch the 
canvas—your finger should leave a dot at each place you touch. The 
dots will be red if you set the Canvas.PaintColor property to red in 
the Component Designer (otherwise, it’s black, as that’s the default).

Adding the Drag Event That Draws a Line
Next, you’ll add the drag event handler. Here’s the difference between a touch and 
a drag:

• A touch is when you place your finger on the canvas and lift it without moving it.

• A drag is when you place your finger on the canvas and move it while keeping it 
in contact with the screen.

In a paint program, dragging your finger across the screen appears to draw a giant, 
curved line along your finger’s path. What you’re actually doing is drawing hundreds 
of tiny, straight lines; each time you move your finger, even a little bit, you extend the 
line from your finger’s last position to its new position.

1. From the DrawingCanvas drawer, drag the DrawingCanvas.Dragged block to 
the workspace. You should see the event handler as it is shown in Figure 2-11.

The DrawingCanvas.Dragged event comes with seven arguments:

startx, starty 
The position of your finger back where the drag started.

currentx, currenty
The current position of your finger.

prevx, prevy
The immediately previous position of your finger.



Adding Behaviors to the Components  29 

draggedSprite
The argument that will be true if the user drags directly on an image sprite. 
We won’t use this argument in this tutorial.

Figure 2-11. A Dragged event has even more arguments than Touched

2. From the DrawingCanvas drawer, drag the DrawingCanvas.DrawLine block into 
the DrawingCanvas.Dragged block, as shown in Figure 2-12.

Figure 2-12. Adding the capability to draw lines

The DrawingCanvas.DrawLine block has four arguments, two for each point 
that determines the line: (x1,y1) is one point, while (x2,y2) is the other. Can you 
figure out what values need to be plugged into each argument? Remember, the 
Dragged event will be called many times as you drag your finger across the can-
vas: the app draws a tiny line each time your finger moves, from (prevx,prevy) to 
(currentX,currentY). Let’s add those to our DrawingCanvas.DrawLine block:



30  Chapter 2:  PaintPot

3. Click the My Definitions drawer. You should see the blocks for the arguments 
you need. Drag the corresponding value blocks to the appropriate slots in 
DrawingCanvas.Dragged. value prevX and value prevY should be plugged into 
the x1 and y1 slots. value currentX and value currentY should be plugged into 
the x2 and y2 slots, as shown in Figure 2-13.

Figure 2-13. As the user drags, the app will draw a line from the previous spot to the current one

Test your app. Try this behavior on the phone: drag your finger 
around on the screen to draw lines and curves. Touch the screen to 
make spots. 

Adding Button Event Handlers
The app you’ve built lets the user draw, but it always draws in red. Next, add event 
handlers for the color buttons so users can change the paint color, and another for 
WipeButton so they can clear the screen and start over.

In the Blocks Editor:

1. Switch to the My Blocks column.

2. Open the drawer for RedButton and drag out the RedButton.Click block.

3. Open the DrawingCanvas drawer. Drag out the set DrawingCanvas.PaintColor 
to block (you may have to scroll through the list of blocks in the drawer to find it) 
and place it in the “do” section of RedButton.Click.



Adding Behaviors to the Components  31 

4. Switch to the Built-In column. Open the Colors drawer and drag out the block for 
the color red and plug it into the set DrawingCanvas.PaintColor to block.

5. Repeat steps 2–4 for the blue and green buttons.

6. The final button to set up is WipeButton. Switch back to the My Blocks column 
and drag out a WipeButton.Click from the ButtonWipe drawer. From the 
DrawingCanvas drawer, drag out DrawingCanvas.Clear and place it in the 
WipeButton.Click block. Confirm that your blocks show up as they do in 
Figure 2-14.

Figure 2-14. Clicking the color buttons changes the canvas’s PaintColor; clicking Wipe clears the screen

Letting the User Take a Picture
App Inventor apps can interact with the powerful features of an Android device, 
including the camera. To spice up the app, we’ll let the user set the background of 
the drawing to a picture she takes with the camera.

1. The Camera component has two key blocks. The Camera.TakePicture block 
launches the camera application on the device. The event Camera.AfterPicture 
is triggered when the user has finished taking the picture. You’ll add blocks in 
the Camera.AfterPicture event handler to set the DrawingCanvas.Background 
Image to the just-taken Switch to the My Blocks column and open the 
TakePictureButton drawer. Drag the TakePictureButton.Click event handler 
into the workspace.

2. From Camera1, drag out Camera1.TakePicture and place it in the 
TakePictureButton.click event handler.

3. From Camera1, drag the Camera1.AfterPicture event handler into the 
workspace.

4. From DrawingCanvas, drag the set DrawingCanvas.BackgroundImage to 
block and place it in the Camera1.AfterPicture event handler.

5. Camera1.AfterPicture has an argument named image, which is the picture just 
taken. You can get a reference to it, value image, in the My Definitions palette; 
drag it out and plug it into DrawingCanvas.BackgroundImage.



32  Chapter 2:  PaintPot

The blocks should look like Figure 2-15.

Figure 2-15. When the picture is taken, it’s set as the canvas’s background image

Test your app. Try out this behavior by clicking Take Picture on your 
phone and taking a picture. The cat should change to the picture 
you take, and then you can draw on that picture. (Drawing on 
Professor Wolber is a favorite pastime of his students, as exemplified 
in Figure 2-16.)

Changing the Dot Size
The size of the dots drawn on the canvas is deter-
mined in the call to DrawingCanvas.DrawCircle 
when the radius argument r is set to 5. To change 
the thickness, you can put in a different value for r. 
To test this, try changing the 5 to a 10 and testing it 
out on the phone to see how it looks.

The catch here is that whatever size you set in the 
radius argument is the only size the user can use. 
What if he wants to change the size of the dots? 
Let’s modify the program so that the user, not just 
the programmer, can change the dot size. We’ll 
change it so that when the user clicks a button 
labeled “Big Dots,” the dot size is 8, and when he 
clicks a button labeled “Small Dots,” it is 2. 

To use different values for the radius argument, the 
app needs to know which one we want to apply. We 
have to tell it to use a specific value, and it has to 
store (or remember) that value somehow so it can 
keep using it. When your app needs to remember 

Figure 2-16. The PaintPot app with 
an “annotated” picture of Professor 
Wolber



Adding Behaviors to the Components  33 

something that’s not a property, you can define a variable. A variable is a memory cell; 
you can think of it like a bucket in which you can store data that can vary, such as the 
current dot size (for more information about variables, see Chapter 15).

Let’s start by defining a variable dotSize: 

1. In the Blocks Editor, open the Definitions drawer in the Built-In column. Drag out 
a def variable block. Change the text “variable” to “dotSize”.

2. Notice that the def dotSize block has an open slot. This is where you can specify 
the initial value for the variable, or the value that it defaults to when the app be-
gins. (This is often referred to as “initializing a variable” in programming terms.) 
For this app, initialize the dotSize to 2 by creating a number 2 block (by either 
starting to type the number 2 or dragging a number 123 block out of the Math 
drawer) and plugging it into def dotSize, as shown in Figure 2-17. 

Figure 2-17. Initializing the variable dotSize with a value of 2

Using variables
Next, we want to change the argument of DrawingCanvas.DrawCircle in the 
DrawingCanvas.Touched event handler so that it uses the value of dotSize rather 
than always using a fixed number. (It may seem like we’ve “fixed” dotSize to the value 
2 because we initialized it that way, but you’ll see in a minute how we can change the 
value of dotSize and therefore change the size of the dot that gets drawn.)

1. In the Blocks Editor, switch to the My Blocks column and open the My Definitions 
drawer. You should see two new blocks: (1) a global dotSize block that pro-
vides the value of the variable, and (2) a set global dotSize to block that sets 
the variable to a new value. These blocks were automatically generated for you 
when you created the dotSize variable, in the same way that value blocks for the 
arguments x and y were created when you added the DrawingCanvas.Touched 
event handler earlier. 

2. Go to the DrawingCanvas.Touched event handler and drag the number 5 
block out of the r slot and place it into the trash. Then replace it with the global 
dotSize block from the My Definitions drawer (see Figure 2-18). When the user 
touches the canvas, the app will now determine the radius from the variable 
dotSize.



34  Chapter 2:  PaintPot

Figure 2-18. Now the size of each circle is dependent on what is stored in the variable dotSize

Changing the values of variables
Here’s where the magic of variables really comes into play—the variable dotSize 
allows the user to choose the size of the circle, and your event handler will draw the 
circle accordingly. We’ll implement this behavior by programming the SmallButton
.Click and BigButton.Click event handlers:

1. Drag out a SmallButton.Click event handler from the SmallButton drawer of 
My Blocks. Then drag out a set global dotSize to block from My Definitions and 
plug it into SmallButton.Click. Finally, create a number 2 block and plug it 
into the set global dotSize to block.

2. Make a similar event handler for BigButton.Click, but set dotSize to 8. Both 
event handlers should now show up in the Blocks Editor, as shown in Figure 2-19.

Note. The “global” in the set global dotSize to refers to the fact that 
the variable can be used in all the event handlers of the program 
(globally). Some programming languages allow you to define 
variables that are “local” to a particular part of the program; App 
Inventor currently does not. 

Figure 2-19. Clicking the buttons changes the dotSize; successive touches will draw at that size 



The Complete App: PaintPot  35 

Test your app. Try clicking the size buttons and then touching the 
canvas. Are the circles drawn with different sizes? Are the lines? 
The line size shouldn’t change because you programmed dotSize 
to only be used in the DrawingCanvas.DrawCircle block. Based 
on that, can you think of how you’d change your blocks so users 
could change the line size as well? (Note that Canvas has a property 
named LineWidth.)

The Complete App: PaintPot
Figure 2-20 illustrates our completed PaintPot app.

Figure 2-20. The final set of blocks for PaintPot

Variations
Here are some variations you can explore:

• The app’s user interface doesn’t provide much information about the current set-
tings (for example, the only way to know the current dot size or color is to draw 
something). Modify the app so that these settings are displayed to the user.

• Let the user enter the dot size within a TextBox component. This way, she can 
change it to other values besides 2 and 8. For more information on input forms 
and the TextBox component, see Chapter 4.



36  Chapter 2:  PaintPot

Summary
Here are some of the ideas we’ve covered in this chapter:

• The Canvas component lets you draw on it. It can also sense touches and drags, 
and you can map these events to drawing functions. 

• You can use screen arrangement components to organize the layout of compo-
nents instead of just placing them one under the other.

• Some event handlers come with information about the event, such as the 
coordinates of where the screen was touched. This information is represented 
by arguments. When you drag out an event handler that has arguments, App 
Inventor creates value blocks for them and places them in the My Definitions 
drawer.

• You create variables by using def variable blocks from the Definitions drawer. 
Variables let the app remember information, like dot size, that isn’t stored in a 
component property. 

• For each variable you define, App Inventor automatically supplies a global value 
block that gives the value of the variable, and a set global variable to block 
for changing the value of the variable. These blocks can be found in the My 
Definitions drawer. To learn more about variables, see Chapter 16.

This chapter showed how the Canvas component can be used for a painting pro-
gram. You can also use it to program animations such as those you’d find in 2D 
games. To learn more, check out the Ladybug Chase game in Chapter 5 and the 
discussion of animation in Chapter 17.




