
CHAPTER 4

No Texting While Driving

This chapter walks you through the develop-
ment of No Texting While Driving, an app that 
autoresponds to text messages you receive 
while you’re driving. The app, first created with 
App Inventor by a beginning computer science 
student, is similar to a now-mass-produced app 
developed by State Farm Insurance. It is a prime 
example of how App Inventor provides access 
to some of the great features of the Android 

phone, including SMS text processing, database management, text-to-speech, and the 
location sensor.

In January 2010, the National Safety Council (NSC) 
announced the results of a study that found that 
at least 28 percent of all traffic accidents—close to 
1.6 million crashes every year—are caused by 
drivers using cell phones, and at least 200,000 of 
those accidents occurred while drivers were 
texting.1 As a result, many states have banned 
drivers from using cell phones altogether.

Daniel Finnegan, a student in the Fall 2010 session 
of the University of San Francisco App Inventor 
programming class, came up with a great app idea 
to help with the driving and texting epidemic. 
The app he created, which is shown in Figure 4-1, 
responds automatically (and hands-free) to any 
text with a message such as “I’m driving right now, 
I’ll contact you shortly.” 

1		http://www.nsc.org/pages/nscestimates16millioncrashescausedbydriversusingcellphonesandtexting.aspx

Figure 4-1. The No Texting While 
Driving app



52  Chapter 4:  No Texting While Driving

Some in-class brainstorming led to a few additional features that were developed for 
a tutorial posted on the App Inventor site:

The user can change the response for different situations
For example, if you’re going into a meeting or a movie instead of driving, the 
response can be modified accordingly.

The app speaks the text aloud
Even if you know the app will autorespond, the jingle of incoming texts can kill 
you with curiosity.

The response message can contain your current location
If your partner is at home making dinner, he or she would probably like to know 
how much longer your commute will last, without endangering you by having 
you answer the text.

Some weeks after the app was posted on the App Inventor site, State Farm 
Insurance created an Android app called “On the Move,” which has similar func-
tionality to No Texting While Driving.2 The service is free to anyone, as part of State 
Farm’s updated Pocket Agent→ for Android™ application, which the company 
announced in a YouTube video that can be found here: http://www.youtube.com/
watch?v=3xtjzO0-Hfw.

We don’t know if Daniel’s app or the tutorial on the App Inventor site influenced 
“On the Move,” but it’s interesting to consider the possibility that an app created in a 
beginning programming course (by a creative writing student, no less!) might have 
inspired this mass-produced piece of software, or at least contributed to the ecosys-
tem that brought it about. It certainly demonstrates how App Inventor has lowered 
the barrier of entry so that anyone with a good idea can quickly and inexpensively 
turn his idea into a tangible, interactive app. 

What You’ll Learn
This is a more complex app than those in the previous chapters, so you’ll build it one 
piece of functionality at a time, starting with the autoresponse message. You’ll learn 
about:

• The Texting component for sending texts and processing received texts.

• An input form for submitting the custom response message.

• The TinyDB database component for saving the customized message even after 
the app is closed.

2		http://www.statefarm.com/aboutus/newsroom/20100819.asp

http://www.youtube.com/watch?v=3xtjzO0-Hfw
http://www.youtube.com/watch?v=3xtjzO0-Hfw


Getting Started  53 

• The Screen.Initialize event for loading the custom response when the app 
launches.

• The Text-to-Speech component for speaking the texts aloud.

• The LocationSensor component for reporting the driver’s current location.

Getting Started
For this app to work, you need a text-to-speech module, Text-To-Speech Extended, 
on your phone. This module is included in Android version 2 or higher, but if you 
are running an Android 1.x operating system, you’ll need to download it from the 
Android Market. On your phone:

1. Open the Market app.

2. Search for TTS.

3. Select the app Text-To-Speech Extended to install.

Once the Text-To-Speech module is installed, open it to test its features. When it 
opens, set the default language as desired. Then select “Listen to Preview.” If you 
don’t hear anything, make sure the volume on your phone is turned up. You can 
also change the way the voice sounds by changing the setting for the TTS Default 
Engine property.

After you’ve set up the Text-To-Speech module to your liking, connect to the App 
Inventor website and start a new project. Name it “NoTextingWhileDriving” (project 
names can’t have spaces) and set the screen’s title to “No Texting While Driving”. 
Open the Blocks Editor and connect to the phone.

Designing the Components
The user interface for the app is relatively simple: it has a label that displays the auto-
mated response, along with a text box and a button for submitting a change. You’ll 
also need to drag in a Texting component, a TinyDB component, a TextToSpeech 
component, and a LocationSensor component, all of which will appear in the “Non-
visible components” area. You can see how this should look in the snapshot of the 
Component Designer shown in Figure 4-2. 



54  Chapter 4:  No Texting While Driving

Figure 4-2. The No Texting While Driving app in the Component Designer

You can build the user interface shown in Figure 4-2 by dragging out the components 
listed in Table 4-1.

Set the properties of the components in the following way:

• Set the Text of PromptLabel to “The text below will be sent in response to all 
SMS texts received while this app is running.”

• Set the Text of ResponseLabel to “I’m driving right now, I’ll contact you shortly.” 
Check its boldness property.

• Set the Text of NewResponseTextbox to “”. (This leaves the text box blank for the 
user’s input.)

• Set the Hint of NewResponseTextbox to “Enter new response text.”

• Set the Text of SubmitResponseButton to “Modify Response.”

Adding Behaviors to the Components
You’ll start by programming the basic text autoresponse behavior, and then succes-
sively add more functionality.



Getting Started  55 

Table 4-1. All the components for the No Texting While Driving app

Component type Palette group What you’ll name it Purpose 

Label Basic PromptLabel Let the user know how the app works.

Label Basic ResponseLabel The response that will be sent back to the 
sender of original text.

TextBox Basic NewResponseTextbox The user will enter the custom response here.

Button Basic SubmitResponseButton The user clicks this to submit response.

Texting Social Texting1 Process the texts.

TinyDB Basic TinyDB1 Store the response in the database.

TextToSpeech Other stuff TextToSpeech1 Speak the texts aloud.

LocationSensor Sensors LocationSensor1 Sense where the phone is.

Programming an autoresponse
For the autoresponse behavior, you’ll use App Inventor’s Texting component. 
You can think of this component as a little person inside your phone that knows 
how to read and write texts. For reading texts, the component provides a Texting 
.MessageReceived event block. You can drag this block out and place blocks inside 
it to show what should happen when a text is received. In the case of this app, we 
want to automatically send back a prewritten response text.

To program the response text, you’ll place a Texting1.SendMessage block within 
the Texting1.MessageReceived block. Texting1.SendMessage actually sends the 
text—so you’ll first need to tell the component what message to send, and who to 
send it to, before calling Texting1.SendMessage. Table 4-2 lists all the blocks you’ll 
need for this autoresponse behavior, and Figure 4-3 shows how they should look in 
the Blocks Editor. 

Table 4-2. The blocks for sending an autoresponse

Block type Drawer Purpose

Texting1.MessageReceived Texting The event handler that is triggered when the phone 
receives a text.

set Texting1.PhoneNumber to Texting Set the PhoneNumber property before sending.

value number My Definitions The phone number of the person who sent the text.

set Texting1.Message to Texting Set the Message property before sending.

ResponseLabel.Text ResponseLabel The message the user has entered.

Texting1.SendMessage Texting Send the message.



56  Chapter 4:  No Texting While Driving

Figure 4-3. Responding to an incoming text

How the blocks work
When the phone receives a text message, the Texting1.MessageReceived event is 
triggered. As shown in Figure 4-3, the phone number of the sender is in the argu-
ment number, and the message received is in the argument messageText. For the 
autoresponse, the app needs to send a text message to the sender. To send the text, 
you first need to set the two key properties of the Texting component: PhoneNumber 
and Message.Texting.PhoneNumber is set to the number of the sender, and 
Texting.Message is set to the text you typed into ResponseLabel: “I’m driving right 
now, I’ll contact you shortly.” Once these are set, the app calls Texting.SendMessage 
to actually send the response.

You may be wondering about the yellow boxes that we have in the Blocks Editor. 
Those are comments, and you can add them by right-clicking a block and selecting 
Add Comment. Once you add a comment, you can show or hide it by clicking the 
black question mark that appears. You don’t have to add comments in your app—
we’ve simply included them here to help describe each block and what it does. 

Most people use comments to document how they are building their app; comments 
explain how the program works, but they won’t make the app behave differently. 
Comments are important, both for you as you build the app and modify it later, and 
for other people who might customize it. The one thing everyone agrees on about 
software is that it changes and transforms often. For this reason, commenting code is 
very important in software engineering, and especially so with open source software 
like App Inventor.

Test your app. You’ll need a second phone to test this behavior. If 
you don’t have one, you can register with Google Voice or a similar 
service and send texts from that service to your phone. 

From the second phone, send a text to the phone running the app. 
Does the second phone receive the response text?



Getting Started  57 

Entering a Custom Response
Next, let’s add blocks so the user can enter her own custom response. In the 
Component Designer, you added a TextBox component named NewResponseTextbox; 
this is where the user will enter the custom response. When the user clicks on the 
SubmitResponseButton, you need to copy her entry (NewResponseTextbox) into the 
ResponseLabel, which is used to respond to texts. Table 4-3 lists the blocks you’ll need 
for transferring a newly entered response into the ResponseLabel. 

Table 4-3. Blocks for displaying the custom response

Block type Drawer Purpose

SubmitResponseButton 
.Click

SubmitResponseButton The user clicks this button to submit a new response 
message.

set ResponseLabel.Text to ResponseLabel Move (set) the newly input value to this label.

NewResponseTextbox.Text NewResponseTextbox The user has entered the new response here.

How the blocks work
Think of how a typical input form works: you first enter something in a text box, and 
then click a submit button to tell the system to process it. The input form for this app 
is no different. Figure 4-4 shows how the blocks are programmed so that when the 
user clicks the SubmitResponseButton, the SubmitResponseButton.Click event is 
triggered.

Figure 4-4. Setting the response to the user’s entry

The event handler in this case copies (or sets, in programming terms) what the 
user has entered in NewResponseTextbox into the ResponseLabel. Recall that 
ResponseLabel holds the message that will be sent out in the autoresponse, so you 
want to be sure to place the newly entered custom message there.

Test your app. Enter a custom response and submit it, and then use 
the second phone to send another text to the phone running the 
app. Was the custom response sent?



58  Chapter 4:  No Texting While Driving

Storing the Custom Response in a Database
You’ve built a great app already, with one catch: if the user enters a custom response, 
and then closes the app and relaunches it, the custom response will not appear 
(instead, the default one will). This behavior is not what your users will expect; they’ll 
want to see the custom response when they restart the app. To make this happen, 
you need to store that custom response persistently.

You might think that placing data in the ResponseLabel.Text property is technically 
“storing” it, but the issue is that data stored in component properties is transient data. 
Transient data is like your short-term memory; the phone “forgets” it as soon as an 
app closes. If you want your app to remember something persistently, you have to 
transfer it from short-term memory (a component property or variable) to long-term 
memory (a database).

To store data persistently, you’ll use the TinyDB component, which stores data in 
a database that’s already on the Android device. TinyDB provides two functions: 
StoreValue and GetValue. The former allows the app to store information in the 
device’s database, while the latter lets the app retrieve information that has already 
been stored. 

For many apps, you’ll use the following scheme:

1. Store data to the database each time the user submits a new value.

2. When the app launches, load the data from the database into a variable or 
property.

You’ll start by modifying the SubmitResponseButton.Click event handler so that it 
stores the data persistently, using the blocks listed in Table 4-4. 

Table 4-4. Blocks for storing the custom response with TinyDB

Block type Drawer Purpose

TinyDB1.StoreValue TinyDB1 Store the custom message in the phone’s database.

text ("responseMessage") Text Use this as the tag for the data.

ResponseLabel.Text ResponseLabel The response message is now here.

How the blocks work
This app uses TinyDB to take the text it just put in ResponseLabel and store it in the 
database. As shown in Figure 4-5, when you store something in the database, you 
provide a tag with it; in this case, the tag is “responseMessage.” Think of the tag as 
the name for the data’s spot in the database; it uniquely identifies the data you are 
storing. As you’ll see in the next section, you’ll use the same tag (“responseMessage”) 
when you load the data back in from the database. 



Getting Started  59 

Figure 4-5. Storing the custom response persistently

Retrieving the Custom Response When the App Opens
The reason for storing the custom response in the database is so it can be loaded 
back into the app the next time the user opens it. App Inventor provides a special 
event block that is triggered when the app opens: Screen1.Initialize (if you com-
pleted MoleMash in Chapter 3, you’ve seen this before). If you drag this event block 
out and place blocks in it, those blocks will be executed right when the app launches.

For this app, your Screen1.Initialize event handler should check to see if a custom 
response has been put in the database. If so, the custom response should be loaded 
in using the TinyDB.GetValue function. The blocks you’ll need for this are shown in 
Table 4-5.

Table 4-5. Blocks for loading the data back in when the app is opened 

Block type Drawer Purpose

def variable ("response") Definition (don’t forget: this is differ-
ent than the My Definitions drawer)

A temporary variable to hold the retrieved 
data.

text ("") Text The initial value for the variable can be 
anything.

Screen1.Initialize Screen1 This is triggered when the app begins.

set global response to My Definitions Set this variable to the value retrieved from 
the database.

TinyDB1.GetValue TinyDB1 Get the stored response text from the 
database.

text ("responseMessage") Text Plug this into the tag slot of TinyDB 
.GetValue, making sure the text is the 
same as that used in TinyDB.Store 
Value earlier.

if Control Ask if the retrieved value has some text.

> Math Check if the length of the retrieved value is 
greater than (>) 0.



60  Chapter 4:  No Texting While Driving

Table 4-5. Blocks for loading the data back in when the app is opened 

Block type Drawer Purpose

length text Text Check if the length of the retrieved value is 
greater than 0.

global response My Definitions This variable holds the value retrieved from 
TinyDB1.GetValue.

number (0) Math Compare this with the length of the response.

set ResponseLabel.Text to ResponseLabel If we retrieved something, place it in 
ResponseLabel. 

global response My Definitions This variable holds the value retrieved from 
TinyDB1.GetValue.

How the blocks work
The blocks are shown in Figure 4-6. To understand them, you must envision a user 
opening the app for the first time, entering a custom response, and opening the app 
subsequent times. The first time the user opens the app, there won’t be any custom 
response in the database to load, so you want to leave the default response in the 
ResponseLabel. On successive launches, you want to load the previously stored 
custom response from the database and place it in the ResponseLabel.

Figure 4-6. Loading the custom response from the database upon app initialization 

When the app begins, the Screen1.Initialize event is triggered. The app calls 
the TinyDB1.GetValue with a tag of “responseMessage,” the same tag you used 
when you stored the user’s custom response entry earlier. The retrieved value is 
placed in the variable response so that it can be checked before we place it as the 
ResponseLabel. Can you think of why you’d want to check what you get back from 
the database before displaying it as the custom message to the user?

(continued)



Getting Started  61 

TinyDB returns empty text if there is no data for a particular tag in the database. 
There won’t be data the first time the app is launched; this will be the case until 
the user enters a custom response. Because the variable response now holds the 
returned value, we can use the if block to check if the length of what was returned 
by the database is greater than 0. If the length of the value contained in response 
is greater than 0, the app knows that TinyDB did return something, and the re-
trieved value can be placed into the ResponseLabel. If the length isn’t greater than 
0, the app knows there is no previously stored response, so it doesn’t modify the 
ResponseLabel (leaving the default response in it).

Test your app. You cannot test this behavior through live testing, 
as the database gets emptied each time you “Connect to Device” to 
restart the app. 

Instead, select “Package for Phone”→Show Barcode, and then 
download the app to your phone by scanning the barcode. 
Once the app is installed, enter a new response message in the 
NewResponseTextbox and click the SubmitResponseButton. Then 
close the app and restart it. Does your custom message appear?

Speaking the Incoming Texts Aloud
In this section, you’ll modify the app so that when you receive a text, the sender’s 
phone number, along with the message, is spoken aloud. The idea here is that when 
you’re driving and hear a text come in, you might be tempted to check the text even 
if you know the app is sending an autoresponse. With text-to-speech, you can hear 
the incoming texts and keep your hands on the wheel.

Android devices provide text-to-speech capabilities and App Inventor provides a 
component, TextToSpeech, that will speak any text you give it. (Note that here 
“text” is meant in the general sense of the word—a sequence of letters, digits, and 
punctuation—not an SMS text.)

In the “Getting Started” section of this app, we asked you to download a text-to-
speech module from the Android Market. If you didn’t do so then, you’ll need to 
now. Once that module is installed and configured as desired, you can use the 
TextToSpeech component within App Inventor.

The TextToSpeech component is very simple to use—you just call its Speak function 
and plug in the text you want spoken into its message slot. For instance, the function 
shown in Figure 4-7 would say, “Hello World.”



62  Chapter 4:  No Texting While Driving

Figure 4-7. Blocks for speaking “Hello World” aloud 

For the No Texting While Driving app, you’ll need to provide a more complicated 
message to be spoken, one that includes both the text received and the phone num-
ber of the person who sent it. Instead of plugging in a static text object like the “Hello 
World” text block, you’ll plug in a make text block. An incredibly useful function, make 
text allows you to combine separate pieces of text (or numbers and other characters) 
into a single text object.

You’ll need to make the call to TextToSpeech.Speak within the Texting.Message 
Received event handler you programmed earlier. The blocks you programmed previ-
ously handle this event by setting the PhoneNumber and Message properties of the 
Texting component appropriately and then sending the response text. You’ll extend 
that event handler by adding the blocks listed in Table 4-6.

Table 4-6. Blocks for speaking the incoming text aloud

Block type Drawer Purpose

TextToSpeech1.Speak TextToSpeech1 Speak the message received out loud.

make text Text Build the words that will be spoken.

text ("SMS text received from") Text The first words spoken.

value number My Definitions The number from which the original text was received.

text (".The message is") Text Put a period in after the phone number and then say, 
“The message is.”

value messageText My Definitions The original message received.

How the blocks work
After the response is sent, the TextToSpeech1.Speak function is called, as shown at 
the bottom of Figure 4-8. You can plug any text object into the message slot of the 
TextToSpeech1.Speak function. In this case, make text is used to build the words to 
be spoken—it concatenates (or adds) together the text “SMS text received from” and 
the phone number from which the message was received (value number), plus the 
text “.The message is,” and finally the message received (value messageText). So, 
if the text “hello” was sent from the number “111–2222,” the phone would say, “SMS 
text received from 111–2222. The message is hello.” 



Getting Started  63 

 
Figure 4-8. Speaking the incoming text aloud

Test your app. You’ll need a second phone to test your app. From 
the second phone, send a text to the phone running the app. Does 
the phone running the app speak the text aloud? Does it still send an 
automated response?

Adding Location Information to the Response 
Apps like Facebook’s Place and Google’s Latitude use GPS information to help people 
track one another’s location. There are major privacy concerns with such apps, one 
reason being that location tracking kindles people’s fear of a “Big Brother” apparatus 
that a totalitarian government might set up to track its citizens’ whereabouts. But 
apps that use location information can be quite useful—think of a lost child, or hikers 
who’ve gotten off the trail in the woods. 

In the No Texting While Driving app, location tracking can be used to convey a bit 
more information in response to incoming texts. Instead of just “I’m driving,” the 
response message can be something like “I’m driving and I’m at 3413 Cherry Avenue.” 
For someone awaiting the arrival of a friend or family member, this extra information 
can be helpful.

App Inventor provides the LocationSensor component for interfacing with the 
phone’s GPS (or geographical positioning system). Besides latitude and longitude in-
formation, the LocationSensor can also tap into Google Maps to provide the driver’s 
current street address.



64  Chapter 4:  No Texting While Driving

It’s important to note that LocationSensor doesn’t always have a reading. For this 
reason, you need to take care to use the component properly. Specifically, your 
app should respond to the LocationSensor.LocationChanged event handler. A 
LocationChanged event occurs when the phone’s location sensor first gets a read-
ing, and when the phone is moved to generate a new reading. Using the blocks listed 
in Table 4-7, our scheme will respond to the LocationChanged event by placing the 
current address in a variable we’ll name lastKnownLocation. Later, we’ll change the 
response message to incorporate the address we get from this variable.

Table 4-7. Blocks to set up the location sensor

Block type Drawer Purpose

def variable ("lastKnownLocation") Definitions Create a variable to hold the last read address.

text ("unknown") Text Set the default value in case the phone’s sensor is 
not working.

LocationSensor1.LocationChanged LocationSensor1 This is triggered on the first location reading and 
every location change.

set global lastKnownLocation to My Definitions Set this variable to be used later.

LocationSensor1.CurrentAddress LocationSensor1 This is a street address such as “2222 Willard Street, 
Atlanta, Georgia.”

How the blocks work
The LocationSensor1.LocationChanged event is triggered the first time the sen-
sor gets a location reading and when the device is moved so that a new reading is 
generated. Since you eventually want to send a street address as part of the response 
message, Figure 4-9 shows how the LocationSensor1.CurrentAddress function is 
called to get that information and store it in the lastKnownLocation variable. Behind 
the scenes, this function makes a call to Google Maps (via an API, something you’ll 
learn about in Chapter 24) to determine the closest street address for the latitude 
and longitude that the sensor reads.

Figure 4-9. Recording the phone’s location in a variable each time the GPS location is sensed



Getting Started  65 

Note that with these blocks, you’ve finished only half of the job. The app still needs 
to incorporate the location information into the autoresponse text that will be sent 
back to the sender. Let’s do that next.

Sending the Location As Part of the Response
Using the variable lastKnownLocation, you can modify the Texting1.Message 
Received event handler to add location information to the response. Table 4-8 lists 
the blocks you’ll need for this.

Table 4-8. Blocks to display location information in the autoresponse

Block type Drawer Purpose

make text Text If there is a location reading, build a compound text object.

ResponseLabel.Text MessageTextBox This is the (custom) message in the text box.

text ("My last known location is:") Text This will be spoken after the custom message (note the 
leading space).

global lastKnownLocation LocationSensor This is an address such as “2222 Willard Street, Atlanta, 
Georgia.”

How the blocks work
This behavior works in concert with the LocationSensor1.LocationChanged event 
and the variable lastKnownLocation. As you can see in Figure 4-10, instead of directly 
sending a message containing the text in ResponseLabel.Text, the app first builds a 
message using make text. It combines the response text in ResponseLabel.Text with 
the text “My last known location is:” followed by the variable lastKnownLocation. 

Figure 4-10. Including location information in the response text



66  Chapter 4:  No Texting While Driving

The default value of lastKnownLocation is “unknown,” so if the location sensor 
hasn’t yet generated a reading, the second part of the response message will contain 
the text “My last known location is: unknown.” If there has been a reading, the second 
part of the response will be something like “My last known location is: 876 Willard 
Street, San Francisco, CA 95422.”

Test your app. From the second phone, send a text to the phone 
running the app. Does the second phone receive the response text 
with the location information? If it doesn’t, make sure you’ve turned 
GPS on in the first phone’s Location settings.

The Complete App: No Texting While Driving
Figure 4-11 shows the final block configuration for No Texting While Driving.

Variations
Once you get the app working, you might want to explore some variations. For 
example:

• Write a version that lets the user define custom responses for particular incom-
ing phone numbers. You’ll need to add conditional (if) blocks that check for 
those numbers. For more information on conditional blocks, see Chapter 18.

• Write a version that sends custom responses based on whether the user is within 
certain latitude/longitude boundaries. So, if the app determines that you’re in 
room 222, it will send back “Bob is in room 222 and can’t text right now.” For 
more information on the LocationSensor and determining boundaries, see 
Chapter 23.

• Write a version that sounds an alarm when a text is received from a number in a 
“notify” list. For help working with lists, see Chapter 19.



Variations  67 

Figure 4-11. The complete No Texting While Driving app (with all comments showing)



68  Chapter 4:  No Texting While Driving

Summary
Here are some of the concepts we’ve covered in this tutorial:

• The Texting component can be used to both send text messages and process the 
ones that are received. Before calling Texting.SendMessage, you should set the 
PhoneNumber and Message properties of the Texting component. To respond to 
an incoming text, program the Texting.MessageReceived handler.

• The TinyDB component is used to store information persistently—in the phone’s 
database—so that the data can be reloaded each time the app is opened. For 
more information on TinyDB, see Chapter 22.

• The TextToSpeech component takes any text object and speaks it aloud.

• make text is used to piece together (or concatenate) separate text items into a 
single text object.

• The LocationSensor component can report the phone’s latitude, longitude, and 
current street address. To ensure that it has a reading, you should access its data 
within the LocationSensor.LocationChanged event handler, which is triggered 
the first time a reading is made and upon every change thereafter. For more 
information on the LocationSensor, see Chapter 23.

If you’re interested in exploring SMS-processing apps further, check out the 
Broadcast Hub app in Chapter 11. 




