
CHAPTER 6

Paris Map Tour

In this chapter, you’ll build an app that lets you create your own custom guide for a
dream trip to Paris. And since a few of your friends can’t join you, we’ll create a compan-
ion app that lets them take a virtual tour of Paris as well. Creating a fully functioning map
app might seem really complicated, but App Inventor lets you use the ActivityStarter
component to launch Google Maps for each virtual location. First, you’ll build an app
that launches maps for the Eiffel Tower, the Louvre, and Notre Dame Cathedral with a
single click. Then you’ll modify the app to create a virtual tour of satellite maps that are
also available from Google Maps.

What You’ll Learn
This chapter introduces the following App Inventor components and concepts:

• The Activity Starter component for launching other Android apps from
your app. You’ll use this component here to launch Google Maps with various
parameters.

• The ListPicker component for allowing the user to choose from a list of
locations.

90  Chapter 6:  Paris Map Tour

Designing the Components
Create a new project in App Inventor and call it
“ParisMapTour”. The user interface for the app has
an Image component with a picture of Paris, a Label
component with some text, a ListPicker compo-
nent that comes with an associated button, and an
ActivityStarter (non-visible) component. You can
design the components using the snapshot in
Figure 6-1.

The components listed in Table 6-1 were used to
create this Designer window. Drag each component
from the Palette into the Viewer and name it as
specified.

Table 6-1. Components for the Paris Map Tour

Component type Palette group What you’ll name it Purpose

Image Basic Image1 Show a static image of a Paris map on screen.

Label Basic Label1 Display the text “Discover Paris with your 
Android!”

ListPicker Basic ListPicker1 Display the list of destination choices.

ActivityStarter Other stuff ActivityStarter1 Launch the Maps app when a destination is 
chosen.

Setting the Properties of ActivityStarter
ActivityStarter is a component that lets you launch any Android app—a browser,
Google Maps, or even another one of your own apps. When a user launches another
app from your app, he can click the back button to return to your app. You’ll build
ParisMapTour so that the Maps application is launched to show particular maps
based on the user’s choice. The user can then hit the back button to return to your
app and choose a different destination.

ActivityStarter is a relatively low-level component in that you’ll need to set some
properties with information familiar to a Java Android SDK programmer, but foreign
to the other 99.999% of the world. For this app, enter the properties as specified in
Table 6-2, and be careful—even the upper-/lowercase letters are important.

Figure 6-1. TheParis Map Tour app
running in the emulator

Adding Behaviors to the Components  91 

Table 6-2. ActivityStarter properties for launching Google Maps

Property Value

Action android.intent.action.VIEW

ActivityClass com.google.android.maps.MapsActivity

ActivityPackage com.google.android.apps.maps

In the Blocks Editor, you’ll set one more property, DataUri, which lets you launch a
specific map in Google Maps. This property must be set in the Blocks Editor instead
of the Component Designer because it needs to be dynamic; it will change based
on whether the user chooses to visit the Eiffel Tower, the Louvre, or the Notre Dame
Cathedral.

We’ll get to the Blocks Editor in just a moment, but there are a couple more details
to take care of before you can move on to programming the behavior for your
components:

1. Download the file metro.jpg from the book site (http://examples.oreilly.com/
0636920016632/) onto your computer, and then choose Add in the Media sec-
tion to load it into your project. You’ll then need to set it as the Picture property
of Image1.

2. The ListPicker component comes with a button; when the user clicks it, the
choices are listed. Set the text of that button by changing the Text property of
ListPicker1 to “Choose Paris Destination”.

Adding Behaviors to the Components
In the Blocks Editor, you’ll need to define a list of destinations, and two behaviors:

• When the app begins, the app loads the destinations into the ListPicker com-
ponent so the user can choose one.

• When the user chooses a destination from the ListPicker, the Maps application
is launched and shows a map of that destination. In this first version of the app,
you’ll just open Maps and tell it to run a search for the chosen destination.

Creating a List of Destinations
Open the Blocks Editor and create a variable with the list of Paris destinations using
the blocks listed in Table 6-3.

http://examples.oreilly.com/0636920016632/
http://examples.oreilly.com/0636920016632/

92  Chapter 6:  Paris Map Tour

Table 6-3. Blocks for creating a destinations variable

Block type Drawer Purpose

def variable ("Destina-
tions")

Definitions Create a list of the destinations.

make a list Lists Add the items to the list.

text ("Tour Eiffel") Text The first destination.

text ("Musée du Louvre") Text The second destination.

text ("Cathédrale Notre Dame") Text The third destination.

The destinations variable will call the make a list function, into which you can
plug the text values for the three destinations in your tour, as shown in Figure 6-2.

Figure 6-2. Creating a list is easy in App Inventor

Letting the User Choose a Destination
The purpose of the ListPicker component is to display a list of items for the user to
choose from. You preload the choices into the ListPicker by setting the property
Elements to a list. For this app, you want to set the ListPicker’s Elements property to
the destinations list you just created. Because you want to display the list when the
app launches, you’ll define this behavior in the Screen1.Initialize event. You’ll need
the blocks listed in Table 6-4.

Table 6-4. Blocks for launching the ListPicker when the app starts

Block type Drawer Purpose

Screen1.Initialize Screen1 This event is triggered when the app starts.

set ListPicker1
. Elements to

ListPicker1 Set this property to the list you want to appear.

global destinations My Definitions The list of destinations.

How the blocks work
Screen1.Initialize is triggered when the app begins. As shown in Figure 6-3, the
event handler sets the Elements property of ListPicker so that the three destina-
tions will appear.

Adding Behaviors to the Components  93 

Figure 6-3. Put anything you want to happen when the app starts in a Screen1.Initialize event handler

Test your app. First, you’ll need to restart the app by clicking
“Connect to Device. . .” in the Blocks Editor. Then, on the phone, click
the button labeled “Choose Paris Destination.” The list picker should
appear with the three items.

Opening Maps with a Search
Next, you’ll program the app so that when the user chooses one of the destinations,
the ActivityStarter launches Google Maps and searches for the selected location.

When the user chooses an item from the ListPicker component, the ListPicker
.AfterPicking event is triggered. In the event handler for AfterPicking, you need to
set the DataUri of the ActivityStarter component so it knows which map to open,
and then you need to launch Google Maps using ActivityStarter.StartActivity. The
blocks for this functionality are listed in Table 6-5.

Table 6-5. Blocks to launch Google Maps with the Activity Starter

Block type Drawer Purpose

ListPicker1.After
Picking

ListPicker1 This event is triggered when the user chooses from ListPicker.

set ActivityStarter1
.DataUri to

ActivityStarter1 The DataUri tells Maps which map to open on launch.

make text Text Build the DataUri from two pieces of text.

text ("geo:0,0?q=") Text The first part of the DataUri expected by Maps.

ListPicker1.Selection ListPicker1 The item the user chose.

ActivityStarter1
.StartActivity

ActivityStarter1 Launch Maps.

How the blocks work
When the user chooses from the ListPicker, the chosen item is stored in ListPicker
.Selection and the AfterPicking event is triggered. As shown in Figure 6-4, the
DataUri property is set to a text object that combines “http://maps.google.com/?q=”
with the chosen item. So, if the user chose the first item, “Tour Eiffel,” the DataUri
would be set to “http://maps.google.com/?q=Tour Eiffel.”

94  Chapter 6:  Paris Map Tour

Figure 6-4. Setting the DataURI to launch the selected map

Since you already set the other properties of the ActivityStarter so that it knows
to open Maps, the ActivityStarter1.StartActivity block launches the Maps app and
invokes the search proscribed by the DataUri.

Test your app. Restart the app and click the “Choose Paris
Destination” button again. When you choose one of the destina-
tions, does a map of that destination appear? Google Maps should
also provide a back button to return you to your app to choose
again—does that work? (You may have to click the back button a
couple of times.)

Setting Up a Virtual Tour
Now let’s spice up the app and have it open some great zoomed-in and street views
of the Paris monuments so your friends at home can follow along while you’re away.
To do this, you’ll first explore Google Maps to obtain the URLs of some specific maps.
You’ll still use the same Parisian landmarks for the destinations, but when the user
chooses one, you’ll use the index (the position in the list) of her choice to select and
open a specific zoomed-in or street-view map.

Before going on, you may want to save your project (using Save As) so you have a
copy of the simple map tour you’ve created so far. That way, if you do anything that
causes issues in your app, you can always go back to this working version and try
again.

Finding the DataUri for Specific Maps
The first step is to open Google Maps on your computer to find the specific maps you
want to launch for each destination:

1. On your computer, browse to http://maps.google.com.

2. Search for a landmark (e.g., the Eiffel Tower).

Setting Up a Virtual Tour  95 

3. Zoom in to the level you desire.

4. Choose the type of view you want (e.g., Address, Satellite, or Street View).

5. Click the Link button near the top right of the Maps window and copy the URL
for the map. You’ll use this URL (or parts of it) to launch the map from your app.

Using this scheme, Table 6-6 shows the URLs you’ll use.

Table 6-6. Virtual tour URLs for Google Maps

Landmark Maps URL

Tour Eiffel  http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=eiffel+tow
er&sll=37.0625,-95.677068&sspn=48.909425,72.333984&ie=UTF8&hq=Tour+Eiffel
&hnear=Tour+Eiffel,+Quai+Branly,+75007+Paris,+Ile-de-France,+France&ll=48.85
7942,2.294748&spn=0.001249,0.002207&t=h&z=19

Musée du Louvre http://maps.google.com/maps?f=q&source=s_q&hl=en&q=louvre&sll=48.86096,
2.335421&sspn=0.002499,0.004415&ie=UTF8&t=h&split=1&filter=0&rq=1&ev=zi
&radius=0.12&hq=louvre&hnear=&ll=48.86096,2.335421&spn=0.002499,0.00441
5&z=18

Cathédrale Notre 
Dame (Street 
View)

http://maps.google.com/maps?f=q&source=s_q&hl=en&q=french+landmarks&sll
=48.853252,2.349111&sspn=0.002411,0.004415&ie=UTF8&t=h&radius=0.12&split
=1&filter=0&rq=1&ev=zi&hq=french+landmarks&hnear=&ll=48.853252,2.349111
&spn=0,0.004415&z=18&layer=c&cbll=48.853046,2.348861&panoid=74fLTqeYdgk
PYj6KKLlqgQ&cbp=12,63.75,,0,-35.58

To view any of these maps, paste the URLs from Table 6-6 into a browser. The first two
are zoomed-in satellite views, while the third is a street view.

You can use these URLs directly to launch the maps you want, or you can define
cleaner URLs using the Google Maps protocols outlined at http://mapki.com. For
example, you can show the Eiffel Tower map using only the GPS coordinates found in
the long URL in Table 6-6 and the Maps geo: protocol:

geo:48.857942,2.294748?t=h&z=19

Using such a DataUri, you’ll get essentially the same map as the map based on the
full URL from which the GPS coordinates were extracted. The t=h specifies that Maps
should show a hybrid map with both satellite and address views, and the z=19 speci-
fies the zoom level. If you’re interested in the details of setting parameters for various
types of maps, check out the documentation at http://mapki.com.

To get comfortable using both types of URLs, we’ll use the geo: format for the first
two DataUri settings in our list, and the full URL for the third.

Defining the dataURIs List
You’ll need a list named dataURIs, containing one DataURI for each map you want to
show. Create this list as shown in Figure 6-5 so that the items correspond to the items
in the destinations list (i.e., the first dataURI should correspond to the first destination,
the Eiffel Tower).

http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=eiffel+tower&sll=37.0625,-95.677068&sspn=48.909425,72.333984&ie=UTF8&hq=Tour+Eiffel&hnear=Tour+Eiffel,+Quai+Branly,+75007+Paris,+Ile-de-France,+France&ll=48.857942,2.294748&spn=0.001249,0.002207&t=h&z=19
http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=eiffel+tower&sll=37.0625,-95.677068&sspn=48.909425,72.333984&ie=UTF8&hq=Tour+Eiffel&hnear=Tour+Eiffel,+Quai+Branly,+75007+Paris,+Ile-de-France,+France&ll=48.857942,2.294748&spn=0.001249,0.002207&t=h&z=19
http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=eiffel+tower&sll=37.0625,-95.677068&sspn=48.909425,72.333984&ie=UTF8&hq=Tour+Eiffel&hnear=Tour+Eiffel,+Quai+Branly,+75007+Paris,+Ile-de-France,+France&ll=48.857942,2.294748&spn=0.001249,0.002207&t=h&z=19
http://maps.google.com/maps?f=q&source=s_q&hl=en&geocode=&q=eiffel+tower&sll=37.0625,-95.677068&sspn=48.909425,72.333984&ie=UTF8&hq=Tour+Eiffel&hnear=Tour+Eiffel,+Quai+Branly,+75007+Paris,+Ile-de-France,+France&ll=48.857942,2.294748&spn=0.001249,0.002207&t=h&z=19
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=louvre&sll=48.86096,2.335421&sspn=0.002499,0.004415&ie=UTF8&t=h&split=1&filter=0&rq=1&ev=zi&radius=0.12&hq=louvre&hnear=&ll=48.86096,2.335421&spn=0.002499,0.004415&z=18
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=louvre&sll=48.86096,2.335421&sspn=0.002499,0.004415&ie=UTF8&t=h&split=1&filter=0&rq=1&ev=zi&radius=0.12&hq=louvre&hnear=&ll=48.86096,2.335421&spn=0.002499,0.004415&z=18
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=louvre&sll=48.86096,2.335421&sspn=0.002499,0.004415&ie=UTF8&t=h&split=1&filter=0&rq=1&ev=zi&radius=0.12&hq=louvre&hnear=&ll=48.86096,2.335421&spn=0.002499,0.004415&z=18
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=louvre&sll=48.86096,2.335421&sspn=0.002499,0.004415&ie=UTF8&t=h&split=1&filter=0&rq=1&ev=zi&radius=0.12&hq=louvre&hnear=&ll=48.86096,2.335421&spn=0.002499,0.004415&z=18
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=french+landmarks&sll=48.853252,2.349111&sspn=0.002411,0.004415&ie=UTF8&t=h&radius=0.12&split=1&filter=0&rq=1&ev=zi&hq=french+landmarks&hnear=&ll=48.853252,2.349111&spn=0,0.004415&z=18&layer=c&cbll=48.853046,2.348861&panoid=74fLTqeYdgkPYj6KKLlqgQ&cbp=12,63.75,,0,-35.58
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=french+landmarks&sll=48.853252,2.349111&sspn=0.002411,0.004415&ie=UTF8&t=h&radius=0.12&split=1&filter=0&rq=1&ev=zi&hq=french+landmarks&hnear=&ll=48.853252,2.349111&spn=0,0.004415&z=18&layer=c&cbll=48.853046,2.348861&panoid=74fLTqeYdgkPYj6KKLlqgQ&cbp=12,63.75,,0,-35.58
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=french+landmarks&sll=48.853252,2.349111&sspn=0.002411,0.004415&ie=UTF8&t=h&radius=0.12&split=1&filter=0&rq=1&ev=zi&hq=french+landmarks&hnear=&ll=48.853252,2.349111&spn=0,0.004415&z=18&layer=c&cbll=48.853046,2.348861&panoid=74fLTqeYdgkPYj6KKLlqgQ&cbp=12,63.75,,0,-35.58
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=french+landmarks&sll=48.853252,2.349111&sspn=0.002411,0.004415&ie=UTF8&t=h&radius=0.12&split=1&filter=0&rq=1&ev=zi&hq=french+landmarks&hnear=&ll=48.853252,2.349111&spn=0,0.004415&z=18&layer=c&cbll=48.853046,2.348861&panoid=74fLTqeYdgkPYj6KKLlqgQ&cbp=12,63.75,,0,-35.58
http://maps.google.com/maps?f=q&source=s_q&hl=en&q=french+landmarks&sll=48.853252,2.349111&sspn=0.002411,0.004415&ie=UTF8&t=h&radius=0.12&split=1&filter=0&rq=1&ev=zi&hq=french+landmarks&hnear=&ll=48.853252,2.349111&spn=0,0.004415&z=18&layer=c&cbll=48.853046,2.348861&panoid=74fLTqeYdgkPYj6KKLlqgQ&cbp=12,63.75,,0,-35.58

96  Chapter 6:  Paris Map Tour

Figure 6-5. The list of maps for your virtual tour

The first two items shown are DataURIs for the Eiffel Tower and the Louvre. They both
use the geo: protocol. The third DataURI is not shown completely because the block
is too long for this page; you should copy this URL from the entry for “Notre Dame,
Street View” in Table 6-6 and place it in a text block.

Modifying the ListPicker.AfterPicking Behavior
In the first version of this app, the ListPicker.AfterPicking behavior set the DataUri
to the concatenation (or combination) of “http://maps.google.com/?q=” and the
destination the user chose from the list (e.g., Tour Eiffel). In this second version, the
AfterPicking behavior must be more sophisticated, because the user is choosing
from one list (destinations), but the DataUri must be selected from another list
(dataURIs). Specifically, when the user chooses an item from the ListPicker, you
need to know the index of his choice so you can use it to select the correct DataUri
from the dataURIs list. We’ll explain more about what an index is in a moment, but it
helps to set up the blocks first to better illustrate the concept. There are quite a few
blocks required for this functionality, all of which are listed in Table 6-7.

Table 6-7. Blocks for choosing a list item based on the user’s selection

Block type Drawer Purpose

def variable ("index") Definitions This variable will hold the index of the user’s choice.

number (1) Math Initialize the index variable to 1.

ListPicker1
.AfterPicking

ListPicker1 This event is triggered when the user chooses an item.

set global index to My Definitions Set this variable to the position of the selected item.

position in list Lists Get the position (index) of a selected item.

ListPicker1
.Selection

ListPicker1 The selected item—for example, “Tour Eiffel.” Plug this into the “thing” 
slot of position in list.

global destinations My Definitions Plug this into the “list” slot of position in list.

set ActivityStarter
.DataUri

ActivityStarter Set this before starting the activity to open the map.

select list item Lists Select an item from the dataURIs list.

global DataURIs My Definitions The list of DataURIs.

Setting Up a Virtual Tour  97 

Table 6-7. Blocks for choosing a list item based on the user’s selection

Block type Drawer Purpose

global index My Definitions Hold the position of the chosen item.

ActivityStarter
.StartActivity

ActivityStarter Launch the Maps app.

How the blocks work
When the user chooses an item from the ListPicker, the AfterPicking event
is triggered, as shown in Figure 6-6. The chosen item—e.g., “Tour Eiffel”—is in
ListPicker.Selection. The event handler uses this to find the position of the selected
item, or the index value, in the destinations list. The index corresponds to the posi-
tion of the chosen destination in the list. So if “Tour Eiffel” is chosen, the index will be
1; if “Musée du Louvre” is chosen, it will be 2; and if “Cathédrale Notre Dame de Paris”
is chosen, the index will be 3.

Figure 6-6. Choosing a list item based on the user’s selection

The index can then be used to select an item from another list—in this case, data
URIs—and to set that entry as the ActivityStarter’s DataUri. Once this is set, the
map can be launched with ActivityStarter.StartActivity.

Test your app. On the phone, click the button labeled “Choose Paris
Destination.” The list should appear with the three items. Choose
one of the items and see which map appears.

(continued)

98  Chapter 6:  Paris Map Tour

Variations
Here are some suggested variations to try:

• Create a virtual tour of some other exotic destination, or of your workplace or
school.

• Create a customizable Virtual Tour app that lets a user create a guide for a location
of her choice by entering the name of each destination along with the URL of a
corresponding map. You’ll need to store the data in a TinyWebDB database and
create a Virtual Tour app that works with the entered data. For an example of how
to create a TinyWebDB database, see the MakeQuiz/TakeQuiz app in Chapter 10.

Summary
Here are some of the ideas we’ve covered in this chapter:

• List variables can be used to hold data like map destinations and URLs.

• The ListPicker component lets the user choose from a list of items. The
ListPicker’s Elements property holds the list, the Selection property holds
the selected item, and the AfterPicking event is triggered when the user
chooses an item from the list.

• The ActivityStarter component allows your app to launch other apps. This
chapter demonstrated its use with the Maps application, but you can launch a
browser or any other Android app as well, even another one you created yourself.
See http://appinventor.googlelabs.com/learn/reference/other/activitystarter.html for
more information.

• You can launch a particular map in Google Maps by setting the DataUri prop-
erty. You can find URIs by configuring a particular map in the browser and then
choosing the Link button to find the URI. You can either place such a URI directly
into the DataUri of your ActivityStarter, or build your own URI using the
protocols defined at http://mapki.com.

• You can identify the index of a list item using the position in list block. With
ListPicker, you can use list position to find the index of the item the user
chooses. This is important when, as in this chapter, you need the index to choose
an item from a second, related list. For more information on List variables and
the ListPicker component, see Chapter 19.

http://appinventor.googlelabs.com/learn/reference/other/activitystarter.html

