
CHAPTER 10

MakeQuiz and TakeQuiz

The Presidents Quiz app in Chapter 8 can be customized 
to build any quiz, but the customization is restricted to 
App Inventor programmers. Only you, as the program-
mer, can modify the questions and answers; there is no 
way for parents, teachers, or other app users to create 
their own quizzes or change the quiz questions (unless 
they too want to learn how to use App Inventor!).

In this chapter, you’ll build a MakeQuiz app that lets a 
“teacher” create quizzes using an input form. The quiz 
questions and answers will be stored in a web database 
so that “students” can access a separate TakeQuiz app 
and take the test. While building these two apps, you’ll 
make yet another significant conceptual leap and learn 
how to create apps with user-generated data that is 
shared across apps and among users.

MakeQuiz and TakeQuiz are two apps that work in 
tandem and allow a “teacher” to create quizzes for a 
“student.” Parents can create fun trivia apps for their 
children during a long road trip, grade-school 
teachers can build “Math Blaster” quizzes, and college 
students can build quizzes to help their study groups 
prepare for a final. This chapter builds on the 
Presidents Quiz in Chapter 8, so if you haven’t 
completed that app, you should do so before con-
tinuing here.

You’ll design two apps, MakeQuiz for the “teacher” 
(see Figure 10-1) and TakeQuiz for the “student.” With 
MakeQuiz:

• The user enters questions and answers in an input 
form.

• The entered question-answer pairs are displayed.
Figure 10-1. The MakeQuiz app



148  Chapter 10:  MakeQuiz and TakeQuiz

• The quiz questions and answers are stored in a database.

TakeQuiz will work similarly to the Presidents Quiz app you’ve already built. In fact, 
you’ll create it using that app as a starting point. TakeQuiz will differ in that the ques-
tions asked will be those that were entered into the database using MakeQuiz.

What You’ll Learn
The Presidents Quiz was an example of an app with static data: no matter how many 
times you take the quiz, the questions are always the same because they are written 
as part of the app (also known as hardcoded). News apps, blogs, and social network-
ing apps like Facebook and Twitter work with dynamic data, meaning it can change 
over time. Often, this dynamic information is user-generated—the app allows users to 
enter, modify, and share information. With MakeQuiz and TakeQuiz, you’ll learn how 
to build an app that handles user-generated data.

If you completed the Xylophone app (Chapter 9), you’ve already been introduced to 
dynamic lists; in that app, the musical notes the user plays are recorded in lists. Apps 
with such user-generated data are more complex, and the blocks are more abstract 
because they don’t rely on predefined, static data. You define list variables, but you 
define them without specific items. As you program your app, you need to envision 
the lists being populated with data entered by the end user.

This tutorial covers the following App Inventor concepts:

• Input forms for allowing the user to enter information.

• Displaying items from multiple lists.

• Persistent data—MakeQuiz will save the quiz questions and answers in a web 
database, and TakeQuiz will load them in from the same database.

• Data sharing—you’ll store the data in a web database using the TinyWebDB com-
ponent (instead of the TinyDB component used in previous chapters). 

Getting Started
Connect to the App Inventor website and start a new project. Name it “MakeQuiz” 
and set the screen’s title to “Make Quiz”. Open the Blocks Editor and connect to 
your phone.



Designing the Components  149 

Designing the Components
Use the Component Designer to create the interface for MakeQuiz. When you finish, 
it should look something like Figure 10-2 (there are also more detailed instructions 
after the snapshot).

You can build the user interface shown in Figure 10-2 by dragging out the compo-
nents listed in Table 10-1. Drag each component from the Palette into the Viewer 
and name it as specified in the table. Note that you can leave the header label names 
(Label1 – Label4) as their defaults (you won’t use them in the Blocks Editor anyway).

Figure 10-2. MakeQuiz in the Component Designer

Table 10-1. All the components for the MakeQuiz app

 Component type Palette group  What you’ll name it  Purpose 

TableArrangement Screen  
Arrangement

TableArrangement1 Format the form, including the ques-
tion and answer.

Label Basic Label1 The “Question:” prompt.

TextBox Basic QuestionText The user enters questions here.

Label Basic Label2 The “Answer:” prompt.

TextBox Basic AnswerText The user enters answers here.

Button Basic SubmitButton The user clicks this to submit a QA pair.

Label Basic Label3 Display “Quiz Questions and Answers.”

Label Basic QuestionsAnswersLabel Display previously entered QA pairs.

TinyWebDB Not ready for 
prime time

TinyWebDB1 Store data to and retrieve data from the 
database.



150  Chapter 10:  MakeQuiz and TakeQuiz

Set the properties of the components in the following way:

1. Set the Text of Label1 to “Question”, the Text of Label2 to “Answer”, and the text 
of Label3 to “Quiz Questions and Answers”.

2. Set the FontSize of Label3 to 18 and check the FontBold box.

3. Set the Hint of QuestionText to “Enter a question” and the Hint of AnswerText 
to “Enter an answer”.

4. Set the Text of SubmitButton to “Submit”.

5. Set the Text of QuestionsAnswersLabel to “Questions and Answers”.

6. Move the QuestionText, AnswerText, and their associated labels into 
TableArrangement1.

Adding Behaviors to the Components
As with the Presidents Quiz app, you’ll first define some global variables for the 
QuestionList and AnswerList, but this time you won’t provide fixed questions and 
answers. Table 10-2 lists the blocks you’ll need to define the lists.

Table 10-2. Blocks for defining the question and answer lists

 Block type Drawer Purpose

def variable ("Ques-
tionList")

Definitions Define the QuestionList variable (rename it).

def variable ("An-
swerList")

Definitions Define the AnswerList variable (rename it).

make a list Lists Set up the QuestionList for new items.

make a list Lists Set up the AnswerList for new items.

The blocks should look as shown in Figure 10-3.

Figure 10-3. The lists for MakeQuiz

Note that, unlike the Presidents Quiz app, the lists are defined without items in the 
slots. This is because with MakeQuiz and TakeQuiz, all data will be created by the app 
user (it is dynamic, user-generated data).



Adding Behaviors to the Components  151 

Recording the User’s Entries
The first behavior you’ll build is for handling the user’s input. Specifically, when the 
user enters a question and answer and clicks Submit, you’ll use add item to list 
blocks to update the QuestionList and AnswerList. Table 10-3 lists the blocks you’ll 
need.

Table 10-3. Blocks for recording the user’s entries

 Block type Drawer Purpose

SubmitButton.Click SubmitButton Triggered when the user clicks this button.

add items to list (2) Lists Add the data the user enters to the lists.

global QuestionList My Definitions Plug this into the “list” slot of the first add items to 
list block.

QuestionText.Text QuestionText User’s entry; plug this into the “item” slot of the first add 
items to list block.

global AnswerList My Definitions Plug this into the “list” slot of the second add items to 
list block.

AnswerText.Text AnswerText User’s entry; plug this into the “item” slot of the second add 
items to list block.

set QuestionsAnswers 
Label.Text to 

QuestionsAnswersLabel Display the updated lists.

make text Text Build a text object with both lists.

global QuestionList My Definitions The questions.

text (:) Text Place a colon between lists.

global AnswerList My Definitions The answers.

How the blocks work
The add items to list block appends, or adds, each item to the end of a list. As shown 
in Figure 10-4, the app takes the text the user has entered in the QuestionText and 
AnswerText text boxes and appends each to the corresponding list. 

The add items to list blocks update the QuestionList and AnswerList variables, 
but these changes are not yet shown to the user. The third row of blocks displays 
these lists by concatenating them (make text) with a colon in between. By default, 
App Inventor displays lists with surrounding parentheses and spaces between items 
like this: (item1 item2 item3). Of course, this is not the ideal way to display the lists, 
but it will allow you to test the app’s behavior for now. Later, you’ll create a more 
sophisticated method of displaying the lists that shows each question-answer pair 
on a separate line.



152  Chapter 10:  MakeQuiz and TakeQuiz

Figure 10-4. Adding the new entries to the lists

Test your app. On the phone, enter a question and answer and 
click the SubmitButton. The app should display the single entry 
in the QuestionList, a colon, and then the single entry in the 
AnswerList. Add a second question and answer to make sure the 
lists are being created correctly.

Blanking Out the Question and Answer
As you’ll recall from the Presidents Quiz app, when you moved on to the next ques-
tion in the list, you needed to blank out the answer results from the previous ques-
tion. In this app, when a user submits a question-answer pair, you’ll want to clear the 
QuestionText and AnswerText text boxes so they’re ready for a new entry instead of 
showing the previous one. To do this, add the blocks listed in Table 10-4 at the bot-
tom of the SubmitButton.Click event handler.

Table 10-4. Blocks for blanking out the question and answer text boxes

 Block type Drawer Purpose

set QuestionText.Text to QuestionText Blank out the question.

set AnswerText.Text to AnswerText Blank out the answer.

text (two blank ones) Text Replace QuestionText and AnswerText.



Adding Behaviors to the Components  153 

How the blocks work
When the user submits a new question and answer, they are added to their respec-
tive lists and displayed. At that point, the text in the QuestionText and AnswerText is 
blanked out with empty text blocks, as shown in Figure 10-5. Note that you can create 
an empty text block by clicking on the text within the block and pressing Delete.

Figure 10-5. Blanking out the question and answer text boxes after submission

Test your app. Add some questions and answers. Each time you 
submit a pair, the QuestionText and AnswerText should be 
cleared so that only the hint appears (e.g., “Enter a question”).

Displaying Question-Answer Pairs on Multiple Lines
In the app you’ve built so far, the question and answer lists are displayed separately 
and with the default list display format for App Inventor. So, if you were making a 
quiz on state capitals and had entered two pairs of questions and answers, it might 
appear like so:

(What is the capital of California? What is the capital of New York? Sacramento Albany) 



154  Chapter 10:  MakeQuiz and TakeQuiz

As you can imagine, if someone is creating a fairly long quiz, that could get pretty 
messy. A better display would show each question with its corresponding answer, 
with one question-answer pair per line like this:

What is the capital of California?: Sacramento
What is the capital of New York?: Albany

The technique for displaying a single list with each item on a separate line is de-
scribed in Chapter 20—you may want to read that chapter before going on.

The task here is a bit more complicated, as you’re dealing with two lists. Because of 
its complexity, you’ll put the blocks for it in a procedure named displayQAs, and call 
that procedure from the SubmitButton.Click event handler.

To display question-answer pairs on separate lines, you’ll need to do the following:

• Use a foreach block to iterate through each question in the QuestionList.

• Use a variable answerIndex so that you can grab each answer as you iterate 
through the questions.

• Use make text to build a text object with each question and answer pair, and a 
newline character (\n) separating each pair.

You’ll need the blocks listed in Table 10-5.

Table 10-5. Blocks for displaying the question-answer pairs on separate lines

Block type Drawer Purpose

to procedure ("displayQAs") Definition This is a procedure block enclosing all other blocks.

def var ("answer") Definition Temporarily store each answer.

def var ("answerIndex") Definition Keep track of which answer (and question) the user 
is on.

text ("text") Text Initialize the variable answer to text.

number (1) Math Initialize the variable answerIndex to 1.

set QuestionsAnswers 
Label.Text to

My Definitions Initialize the label to empty.

text ("") Text Plug this into set QuestionsAnswers 
Label.Text to.

set global answerIndex 
to

My Definitions Reinitialize answerIndex each time displayQAs 
is called.

number (1) Math Reinitialize answerIndex to 1.

foreach Control Loop through the QuestionList.



Adding Behaviors to the Components  155 

Table 10-5. Blocks for displaying the question-answer pairs on separate lines

Block type Drawer Purpose

name question (Appears as an argument of 
foreach, default name is 
var.)

Rename the foreach placeholder variable to 
question.

global QuestionList My Definitions Plug this into in the “list” slot of foreach.

set answer to My Definitions Set this variable each time in the foreach.

select list item Lists Select from the list AnswerList.

global AnswerList My Definitions Plug this into the “list” slot of select list item.

global answerIndex My Definitions Plug this into the “index” slot of select list item.

set global answerIndex 
to

My Definitions Increment the index on each iteration through the 
loop.

+ Math Increment answerIndex.

global answerIndex My Definitions Plug this into +.

number (1) Math Plug this into +.

set QuestionsAnswers 
Label.Text to

QuestionsAnswersLabel Display the QAs.

make text Text Build each QA pair.

QuestionsAnswers 
Label.Text

QuestionsAnswersLabel As we iterate, add each new pair to the previous ones.

text ("\n") Text Place a newline between pairs.

value question My Definitions This is the placeholder of the foreach; it’s the 
current question we’re processing.

text (":") Text Place a colon between the question and answer.

global answer My Definitions The current answer.

How the blocks work
The displayQAs block encapsulates all of the blocks for displaying the data, as shown 
in Figure 10-6. By using a procedure, we won’t have to have the display blocks more 
than once in the app, and we can just call displayQAs when we need to display the 
lists.

(continued)



156  Chapter 10:  MakeQuiz and TakeQuiz

Figure 10-6. The displayQAs procedure 

The foreach only allows you to iterate through one list. In this case, there are two 
lists, and you need to select each answer as you proceed through the questions. To 
accomplish this, we’ll use an index variable, as we did with the currentQuestion 
Index in the Presidents Quiz tutorial in Chapter 8. In this case, the index variable, 
answerIndex, is used to track the position in the AnswerList as the foreach goes 
through the QuestionList.

answerIndex is set to 1 before the foreach begins. Within the foreach, answerIndex 
selects the current answer from the AnswerList, and then it is incremented. On each 
iteration of the foreach, the current question and answer are concatenated to the 
end of the QuestionsAnswersLabel.Text property, with a colon between them.

Calling the new procedure
You now have a procedure for displaying the question-answer pairs, but it won’t 
help unless you call it when you need it. Modify the SubmitButton.Click event 
handler by calling displayQAs instead of displaying the lists with the simple set 
QuestionsAnswersLabel.Text to block. The updated blocks should appear as 
shown in Figure 10-7.



Adding Behaviors to the Components  157 

Figure 10-7. Calling the displayQAs procedure from SubmitButton.Click

Test your app. On the phone, add some more question-answer pairs. 
The display should now show each question with its corresponding 
answer, with each question-answer pair on a separate line.

Storing the Questions and Answers in a Database
So far, you’ve created an app that puts the entered questions and answers into a 
list. But what happens if the quiz maker closes the app? If you’ve completed the 
“No Texting While Driving” app (Chapter 4) or the “Android, Where’s My Car?” app 
(Chapter 7), you know that if you don’t store the data in a database, it won’t be there 
when the user closes and reopens the app. Storing the data persistently will allow the 
quiz maker to view or edit the latest update of the quiz each time the app is opened. 
Persistent storage is also necessary because the TakeQuiz app needs access to the 
data as well. 

You’re already familiar with using the TinyDB component to store and retrieve data in 
a database. But in this case, you’ll use the TinyWebDB component instead. Whereas 
TinyDB stores information directly on a phone, TinyWebDB stores data in databases 
that live on the Web. 

What about your app design would merit using an online database instead of one 
stored on a person’s phone? The key issue here is that you’re building two apps that 
both need access to the same data—if the quiz maker stores the questions and  
answers on her phone, the quiz takers won’t have any way of getting to the data for 



158  Chapter 10:  MakeQuiz and TakeQuiz

their quiz! Because TinyWebDB stores data on the Web, the quiz taker can access the 
quiz questions and answers on a different device than the quiz maker’s. (Online data 
storage is often referred to as the cloud.) 

Here’s the general scheme for making list data—like the questions and 
answers—persistent:

• Store a list to the database each time a new item is added to it.

• When the app launches, load the list from the database into a variable.

Start by storing the QuestionList and AnswerList in the database each time 
the user enters a new pair. You’ll add the blocks shown in Table 10-6 to the 
SubmitButton.Click event handler.

Table 10-6. The blocks for storing the data to the database

 Block type Drawer Purpose

TinyWebDB1 
.StoreValue

TinyWebDB1 Store questions in the database.

text ("questions") Text Plug in “questions” as the tag of StoreValue.

global Question 
List

My Definitions Plug this into the “value” slot of StoreValue.

TinyWebDB1 
.StoreValue

TinyWebDB1 Store answers in the database.

text ("answers") Text Plug in “answers” as the tag of StoreValue.

global AnswerList My Definitions Plug this into the “value” slot of StoreValue.

How the blocks work
The TinyWebDB1.StoreValue blocks store data in a web database. StoreValue has 
two arguments: the tag that identifies the data and the value that is the actual data 
you want to store. As shown in Figure 10-8, the QuestionList is stored with a tag of 
“questions” while the AnswerList is stored with a tag of “answers.”

However, for your app, you should use tags that are more distinctive than “questions” 
and “answers” (e.g., “DavesQuestions” and “DavesAnswers”). This is important because 
you’re using the default web database for App Inventor, so your data (the list of ques-
tions and answers) can be overwritten by others, including other people following 
this tutorial. 

Note that the default web service is shared among programmers and apps, so it is in-
tended only for testing. When you’re ready to deploy your app with real users, you’ll 
want to set up your own private database service. Fortunately, doing so is straight-
forward and requires no programming (see Chapter 22).



Adding Behaviors to the Components  159 

Figure 10-8. Storing the questions and answers in the database

Test your app. Enter a question and answer and click Submit. To 
check if your data was stored in the database as desired, open a 
browser and enter the URL http://appinvtinywebdb.appspot.com 
in the address bar. The page that appears is the administrative 
interface to the database and includes a table of tag-value pairs. If 
you search for the tag you used in the StoreValue blocks (e.g., “ques-
tions”), you can check the value stored with it. You can also click on 
the “/getvalue” link and enter your tag to find its value. Does your 
data appear?



160  Chapter 10:  MakeQuiz and TakeQuiz

Loading Data from the Database
One reason we need to store the questions and answers in a database is so the per-
son creating the quiz can close the app and relaunch it at a later time without losing 
the questions and answers previously entered. (We also do it so the quiz taker can 
access the questions, but we’ll cover that later.) Let’s program the blocks for loading 
the lists back into the app from the web database each time the app is restarted.

As we’ve covered in earlier chapters, to specify what should happen when an app 
launches, you program the Screen.Initialize event handler. In this case, the app 
needs to request two lists from the TinyWebDB web database—the questions and the 
answers—so the Screen1.Initialize will make two calls to TinyWebDB .GetValue. 

You’ll need the blocks listed in Table 10-7.

Table 10-7. Screen.Initialize blocks for retrieving database data

 Block type Drawer Purpose

Screen1.Initialize Screen1 Triggered when the app begins.

TinyWebDB .Get 
Value (2)

TinyWebDB Request the stored QuestionList and AnswerList.

text ("questions") Text Instead of “questions,” use the tag you used to store the questions.

text ("answers") Text Instead of “answers,” use the tag you used to store the questions.

How the blocks work
The TinyWebDB.GetValue blocks, shown in Figure 10-9, work differently than 
TinyDB.GetValue, which returns a value immediately. TinyWebDB.GetValue only 
requests the data from the web database; it doesn’t immediately receive a value. 
Instead, when the data arrives from the web database, a TinyWebDB.GotValue 
event is triggered. You must also program another event handler to process the data 
that is returned. 

Figure 10-9. Requesting the lists from the database when the app opens

When the TinyWebDB.GotValue event occurs, the data requested is contained in an 
argument named valueFromWebDB. The tag you requested is contained in the argu-
ment tagFromWebDB. 



Adding Behaviors to the Components  161 

In this app, since two different requests are made for the questions and answers, 
GotValue will be triggered twice. To avoid putting questions in your AnswerList 
or vice versa, your app needs to check the tag to see which request has arrived, 
and then put the value returned from the database into the corresponding list 
(QuestionList or AnswerList). Now you’re probably realizing how useful those 
tags really are!

You’ll need the blocks listed in Table 10-8 for the GotValue event handler.

Table 10-8. Blocks for TinyWebDB.GotValue

 Block type Drawer Purpose

TinyWebDB.GotValue TinyWebDB Triggered when the data arrives.

if Control Check if the database has any data.

is a list? List If data is a list, it’s non-empty.

value valueFrom 
WebDB

My Definitions The argument holding the data returned from the database.

ifelse Control Ask which GetValue request arrived.

= Math Compare tagFromWebDB to “questions.”

text ("questions") Text This is the tag that was used to store QuestionList.

value tagFromWebDB My Definitions An argument of GotValue; specifies which request.

set global Question 
List to

My Definitions If tagFromWebDB is “questions,” this list will be set.

set global Answer 
List to

My Definitions If tagFromWebDB is not “questions,” this list will be set.

value valueFrom 
WebDB (2)

My Definitions Hold the value returned from the database.

if Control Check if both the lists are loaded before displaying.

= Math Compare the lengths of the lists.

length of list (2) Lists Check if the lengths of the lists are the same.

global QuestionList My Definitions Plug this into one of the length of list blocks.

global AnswerList My Definitions Plug this into the other length of list block.

call displayQAs My Definitions Display the newly loaded questions and answers.

How the blocks work
The app calls TinyWebDB1.GetValue twice: once to request the stored 
QuestionList and once to request the stored AnswerList. When the data arrives 
from the web database from either request, the TinyWebDB1.GotValue event is 
triggered, as shown in Figure 10-10.



162  Chapter 10:  MakeQuiz and TakeQuiz

Figure 10-10. GotValue is triggered when the data arrives from the Web

The valueFromWebDB argument of GotValue holds the data returned from the data-
base request. We need the outer if block in the event handler because the database 
will return an empty text (“”) in valueFromWebDB if it’s the first time the app has been 
used and there aren’t yet questions and answers. By asking if the valueFromWebDB 
is a list?, you’re making sure there is some data actually returned. If there isn’t any 
data, you’ll bypass the blocks for processing it.

If data is returned (is a list? is true), the blocks go on to check which request has 
arrived. The tag identifying the data is in tagFromWebDB: it will be either “questions” 
or “answers.” If the tag is “questions,” the valueFromWebDB is put into the variable 
QuestionList. Otherwise (else), it is placed in the AnswerList. (If you used tags 
other than “questions” and “answers,” check for those instead.)

We only want to display the lists after both have arrived (GotValue has been trig-
gered twice). Can you think of how you’d know for sure that you have both lists 
loaded in from the database? These blocks use an if test to check if the lengths of the 
lists are the same, as this can only be true if both have been returned. If they are, the 
handy displayQAs procedure you wrote earlier is called to display the loaded data.

Test your app. Restart the app by clicking “Connect to Device...” 
in the Blocks Editor. When the app initializes, it should display the 
previously entered questions and answers. If you close the app and 
restart, the previous quiz should still appear.



The Complete App: MakeQuiz   163 

The Complete App: MakeQuiz 
Figure 10-11 illustrates the final blocks for the MakeQuiz app.

Figure 10-11. The blocks for MakeQuiz



164  Chapter 10:  MakeQuiz and TakeQuiz

TakeQuiz: An App for Taking the Quiz in the Database
You now have a MakeQuiz app that will store a quiz in a web database. Building 
TakeQuiz, the app that dynamically loads the quiz, is simpler. It can be built with a 
few modifications to the Presidents Quiz you completed in Chapter 8 (if you have not 
completed that tutorial, do so now before continuing).

Begin by opening your Presidents Quiz app, choosing Save As, and naming the new 
project “TakeQuiz”. This will leave your Presidents Quiz app unmodified but allow you 
to use its blocks as the basis for TakeQuiz.

Then make the following changes in the Designer:

1. This version of MakeQuiz/TakeQuiz does not display images with each ques-
tion, so first remove the references to images from the TakeQuiz app. In the 
Component Designer, choose each image from the Media palette and delete it. 
Then delete the Image1 component, which will remove all references to it from 
the Blocks Editor.

2. Since TakeQuiz will work with database data, drag a TinyWebDB component into 
the app.

3. Because you don’t want the user to answer or click the NextButton until the 
questions are loaded, uncheck the Enabled property of the AnswerButton and 
NextButton.

TakeQuiz: Modifying the Blocks to Load the 
Quiz from the Database
Now modify the blocks so that the quiz given to the user is loaded from the database. 
First, since there are no fixed questions and answers, remove all the actual question 
and answer text blocks from the make a list blocks within the QuestionList and 
AnswerList. The resulting blocks should appear as shown in Figure 10-12.

Figure 10-12. The question and answer lists now start empty

You can also completely delete the PictureList; this app won’t deal with images. Now 
modify your Screen1.Initialize so that it calls TinyWebDB.GetValue twice to load the 
lists, just as you did in MakeQuiz. The blocks should look as they do in Figure 10-13.



TakeQuiz: Modifying the Blocks to Load the Quiz from the Database  165 

Figure 10-13. Requesting the questions and answers from the web database

Finally, drag out a TinyWebDB.GotValue event handler. This event handler should 
look similar to the one used in MakeQuiz, but here you want to show only the first 
question and none of the answers. Try making these changes yourself first, and then 
take a look at the blocks in Figure 10-14 to see if they match your solution.

Figure 10-14.  GotValue handles the data that arrives from the Web 

How the Blocks Work
When the app begins, Screen1.Initialize is triggered and the app requests the ques-
tions and answers from the web database. When each request arrives, the TinyWebDB 
.GotValue event handler is triggered. The app first checks if there is indeed data in 
valueFromWebDB using is a list?. If it finds data, the app asks which request has come 
in, using tagFromWebDB, and places the valueFromWebDB into the appropriate list. If the 
QuestionList is being loaded, the first question is selected from QuestionList and 
displayed. If the AnswerList is being loaded, the AnswerButton and NextButton are 
enabled so the user can begin taking the test.



166  Chapter 10:  MakeQuiz and TakeQuiz

Test your app. Restart the app by clicking “Connect to Device...” in 
the Blocks Editor. Does the first question from your MakeQuiz quiz 
appear? Can you take a quiz just as you did with the Presidents Quiz 
(except for the pictures)?

The Complete App: TakeQuiz
Figure 10-15 illustrates the final blocks for TakeQuiz.

Variations
Once you get MakeQuiz and TakeQuiz working, you might want to explore some 
variations. For example:

• Allow the quiz maker to specify an image for each question. Of course, you (the 
app developer) can’t preload these images, and there is currently no way for an 
app user to do it. So the images will need to be URLs from the Web, and the quiz 
maker will need to enter these URLs as a third item in the MakeQuiz form. Note 
that you can set the Picture property of an Image component to a URL.

• Allow the quiz maker to delete items from the questions and answers. You can 
let the user choose a question using the ListPicker component, and you can 
remove an item with the remove list item block (remember to remove from 
both lists and update the database). For help with ListPicker and list deletion, see 
Chapter 19.

• Let the quiz maker name the quiz. You’ll need to store the quiz name under a 
different tag in the database, and you’ll need to load the name along with the 
quiz in TakeQuiz. Once you’ve loaded the name, use it to set the Screen.Title 
property so that it appears when the user takes a quiz.

• Allow multiple, named quizzes to be created. You’ll need a list of quizzes, and you 
can use each quiz name as (part of) the tag for storing its questions and answers.



Variations  167 

Figure 10-15. The blocks for TakeQuiz



168  Chapter 10:  MakeQuiz and TakeQuiz

Summary
Here are some of the concepts we’ve covered in this chapter:

• Dynamic data is information input by the app’s user or loaded in from a data-
base. A program that works with dynamic data is more abstract. For more infor-
mation, see Chapter 19.

• You can store data persistently in a web database with the TinyWebDB 
component.

• You retrieve data from a TinyWebDB database by requesting it with TinyWebDB 
.GetValue. When the web database returns the data, the TinyWebDB.GotValue 
event is triggered. In the TinyWebDB.GotValue event handler, you can put the 
data in a list or process it in some way.

• TinyWebDB data can be shared among multiple phones and apps. Fore more 
information on (web) databases, see Chapter 22.




